Formal properties of place/transition nets

  • M. Jantzen
  • R. Valk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 84)


Definitions and theorems fundamental for the study of general Petri nets or place/transition nets are presented. The results give properties of marking graphs, provide insight into the computational complexity of several decision procedures, show the initimate relation of reachability sets to Presburger formulas, and deal with state-machine composition and the deadlock-trap property.


Transition Rule Label Graph Coverability Graph Reachability Problem Firing Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L., Manders, K.: Computational Complexity of Decision Procedures for Polynomials. in:Conf.Proceedings of the 16-th IEEE Annual Symp. on Foundat. of Computer Sci., pp 169–177, (1975).Google Scholar
  2. 2.
    Araki, T., Kasami, T.: Decidable Problems on the Strong Connectivity of Petri Net Reachability Sets. Theoret. Comp. Sci., 4, pp 99–119, (1977).CrossRefGoogle Scholar
  3. 3.
    Baker, B.S., Book, R.V.: Reversal-Bounded Multipushdown Machines. Journ. Comp. Syst. Sci., 8, pp 315–332, (1974).Google Scholar
  4. 4.
    Biryukov, A.P.: Some Algorithmic Problems for Finitely Defined Commutative Semigroups. Siberian Mathematics Journ., 8, pp 384–391, (1967).Google Scholar
  5. 5.
    Cardoza, E., Lipton, R., Meyer, A.R.: Exponential Space Complete Problems for Petri Nets and Commutative Semigroups. in: Conf. Proc. of 8-th Annual ACM Symp. on Theory of Computing, pp 50–54, (1976).Google Scholar
  6. 6.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. Journ. Comp. Syst. Sci., 5, pp 511–523, (1971).Google Scholar
  7. 7.
    Commoner, F.: Deadlocks in Petri Nets. Wakefield, Mass., Applied Data Research, Report CA-7206-2311, (1972).Google Scholar
  8. 8.
    Eilenberg, S., Schützenberger, M.P.: Rational Sets in Commutative Monoids. Journ. of Algebra, 13, pp 173–191, (1969).CrossRefGoogle Scholar
  9. 9.
    Genrich, H.J.: Einfache nicht-sequentielle Prozesse. GMD Bonn, ISF Bericht Nr. 37, (1971).Google Scholar
  10. 10.
    Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Informatica, 2, pp 143–161, (1973).CrossRefGoogle Scholar
  11. 11.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger Formulas, and Languages. Pacific Journ. Math., 16, pp 285–296, (1966).Google Scholar
  12. 12.
    Griese, W.: Lebendigkeit in NSK-Petrinetzen. Techn. Univ. München, TUM-INFO-7906, (1979).Google Scholar
  13. 13.
    Gurari, E.M., Ibarra, O.H.: An NP-Complete Number-Theoretic Problem. Journal. ACM, 26, pp 567–581, (1979).CrossRefGoogle Scholar
  14. 14.
    Hack, M.: Extended State-Machine Allocatable Nets, an Extension of Free Choice Petri Net Results. Cambridge, Mass., MIT, Project MAC, CSG-Memo 78-1, (1974).Google Scholar
  15. 15.
    Hack, M.: Analysis of Production Schemata by Petri Nets. Cambridge, Mass., MIT, Project MAC, MAC TR-94, (1972). Corrections to MAC TR-94: Comp. Struct. Note 17, (1974).Google Scholar
  16. 16.
    Hack, M.: The Recursive Equivalence of the Reachability Problem and the Liveness Problem for Petri Nets and Vector Addition Systems. in: Conf. Proc. of the 15-th Annual IEEE Symp. on Switching and Automata Theory, pp 156–164, (1974).Google Scholar
  17. 17.
    Hack,M.: Petri Net Languages. Cambridge, Mass., MIT, Project MAC, Comp. Struct. Group Memo 124, (1975).Google Scholar
  18. 18.
    Hack, M.: The Equality Problem for Vector Addition Systems is Undecidable. Theoretical Comp. Sci., 2, pp 77–95, (1976).CrossRefGoogle Scholar
  19. 19.
    Holt,A.W.: Final Report for the Project ‘Development of the Theoretical Foundations for Description and Analysis of Discrete Information Systems'. Wakefield, Mass., Applied Data Res., Report CADD-7405-2011, (1974).Google Scholar
  20. 20.
    Ibarra, O.H.: Reversal-Bounded Multicounter Machines and Their Decision Problems. Journ. ACM, 25, pp 116–133, (1978).CrossRefGoogle Scholar
  21. 21.
    Jaffe,J.M.: Semilinear Sets and Applications. Cambridge, Mass., MIT, Lab. for Comp. Sci., MIT/LCS/TR-183, (1977).Google Scholar
  22. 22.
    Jantzen,M.: Structured Representation of Knowledge by Nets as an Aid for Teaching and Research. in these Proceedings.Google Scholar
  23. 23.
    Jones, N.D.,Landweber, L.H.,Lien, Y.E.: Complexity of Some Problems in Petri nets. Theoretical Comp. Sci., 4, pp 277–299, (1977).CrossRefGoogle Scholar
  24. 24.
    Karp, R.M.,Miller, R.E.: Parallel Program Schemata. Journ. Comp. Syst. Sci., 3, pp 147–195, (1969).Google Scholar
  25. 25.
    Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. in: Parallel Processing, Lecture Notes in Computer Sci., 24, pp 102–112, Berlin: Springer, (1975).Google Scholar
  26. 26.
    Krieg,B.: Petrinetze und Zustandsgraphen. Univ. Hamburg, Fachbereich Informatik, Bericht Nr. IFI-HH-B-29/77, (1977).Google Scholar
  27. 27.
    Krieg,B.: Petrinetze. Univ. Hamburg, Fachbereich Informatik, unpublished lecture notes, (1979).Google Scholar
  28. 28.
    Landweber, L.H.,Robertson, E.L.: Properties of Conflict Free and Persistent Petri Nets. Journ. ACM, 25, pp 352–364, (1978).CrossRefGoogle Scholar
  29. 29.
    Latteux, M.: Cônes Rationnels Commutativement Clos. R.A.I.R.O., Informatique théorique, 11, pp 29–51, (1977).Google Scholar
  30. 30.
    Lautenbach,K.,Schmid,H.A.: Use of Petri Nets for Proving Correctness of Concurrent Process Systems. in: Information Processing 74, pp 187–191, North-Holland Publ. Comp., (1974).Google Scholar
  31. 31.
    Lipton,R.J.: The Reachability Problem Requires Exponential Space. Yale Univ., Dept. of Comp. Sci., Research Report #62, (1976).Google Scholar
  32. 32.
    Liu, L.,Weiner, P.: A Characterization of Semilinear Sets. Journ. Comp. Syst. Sci., 4, pp 299–307, (1970).Google Scholar
  33. 33.
    Matiyasevič, Y.: Enumerable Sets are Diophantine. (Russian), Dokl. Akad. Nauk, SSSR, 191, pp 279–282, (1970). Translation in: Soviet Math. Doklady, 12, pp 249–254, (1971).Google Scholar
  34. 34.
    Mayr, E.W.: The Complexity of the Finite Containment Problem for Petri Nets. Cambridge, Mass., MIT, Lab. for Comp. Sci., MIT/LCS/TR-181, (1977).Google Scholar
  35. 35.
    Memmi, G.: Fuites dans les Réseaux de Petri. R.A.I.R.O., Informatique Theorique, 12, pp 125–144, (1978).Google Scholar
  36. 36.
    Peterson, J.L.: Computation Sequence Sets. Journ. Comp. Syst. Sci., 13, pp 1–24, (1976).Google Scholar
  37. 37.
    Petri,C.A.: Interpretations of Net Theory. GMD Bonn, Interner Bericht Nr. ISF-75-07, (1975).Google Scholar
  38. 38.
    Rackoff, C.: The Covering and Boundedness Problems for Vector Addition Systems. Theoretical Comp. Sci., 6, pp 223–231, (1978).CrossRefGoogle Scholar
  39. 39.
    Thiet-Dung Huynh: On the Complexity of Semilinear Sets. Saarbrücken, Univ. des Saarlandes, Fachbereich Angewandte Mathematik und Informatik, Bericht Nr. A 79/16, (1979).Google Scholar
  40. 40.
    Ullrich,G.: Der Entwurf von Steuerstrukturen für parallele Abläufe mit Hilfe von Petrinetzen. Univ. Hamburg, Fachbereich Informatik, Bericht Nr. IFI-HH-B-36/77, (1977).Google Scholar
  41. 41.
    Valk, R.,Vidal-Naquet, G.: On the Rationality of Petri Net Languages. Lecture Notes in Comp. Sci., 48, pp 319–328, (1977).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • M. Jantzen
    • 1
  • R. Valk
    • 1
  1. 1.University of HamburgGermany

Personalised recommendations