Advertisement

One and multidimensional completely integrable systems arising from the isospectral deformation

  • D. V. Chudnovsky
Part IV Two-Dimensional Models and Related Developments
Part of the Lecture Notes in Physics book series (LNP, volume 126)

Keywords

Spectral Measure Linear Differential Equation Moment Problem Schrodinger Equation Linear Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud. Appl. Math. 53 (1974), pp. 249–315.Google Scholar
  2. 2.
    N.I. Akhiezer, The classical moment problem, Hafner Publishing Company, 1965. 3. G.G. Appel r ot, Mat. Sbornik v. 16 (1892), Proc. Moscow Univ. Sect. Phys.-Math., No. 11 (1894); N.B. Delone, Algebraic integrals of motion of a rigid body about a fixed point, Petersburg, 1892; V.V. Golubev, Lectures on integration of the equations of motion of a rigid body about a fixed point, Published for NSF, Jerusalem, 1960; D.N. Goryachoff, Math. Sbornic., 21 (1900), No. 3; P. Nekrasov, Math. Sbornik., 16 (1892); V.A. Steklov, Transactions of the physical sciences of the society of amateurs of science, v. 8 (1896).Google Scholar
  3. 4.
    H.F. Baker, Proc. Royal Soc. London,Ser. A118 (1928), pp. 584–600.Google Scholar
  4. 5.
    A.A. Belavin, V.E. Zakharov, Pisma JETP 25(1977), No. 12, pp. 603–607.Google Scholar
  5. 6.
    Yu. M. Berezansky, Trudy Moscow Math. Soc., 21 (1970), pp. 47–102; Yu, M. Berezansky, Self-adjoint eigenfunction expansions, Providence, Rhode Island, 1970.Google Scholar
  6. 7.
    Yu. M. Berezansky, Self-adjoint operators in spaces of functions with infinite number of variables, Naukova Dumka, Kiev, 1978.Google Scholar
  7. 8.
    A.S. Budagov, L.A. Takhtajan, Dokl. Acad. Sci., USSR, 235 (1977), No. 4, pp. 805–808.Google Scholar
  8. 9.
    A.S. Budagov, Proceedings of LOMI, 1970, pp. 24–56.Google Scholar
  9. 10.a
    J.L. Burchnall, T.W. Chaundy, Proc. London Math. Soc., 21 (1922), pp. 420–440Google Scholar
  10. 10.b
    J.L. Burchnall, T.W. Chaundy, Proc. Royal Soc. London, Ser. A118 (1928), 557–573.Google Scholar
  11. 11.
    F. Calogero, A. Degasperis, Nuovo Cimento 32B (1976), p. 201; F. Calogero, A. Degasperis, Nuovo Cimento 39B (1977), 1.Google Scholar
  12. 12.
    I.V. Cherednik, Funct. and Appl. 12 (1978), 45.Google Scholar
  13. 13.
    D.V. Chudnovsky, C.R. Acad. Sci. Paris, A289 (1979), pp. A–429–A–432.Google Scholar
  14. 14.
    D.V. Chudnovsky, Phys. Lett. A, 74A (1979), pp. 185–188.CrossRefGoogle Scholar
  15. 15.
    D.V. Chudnovsky, Saclay preprint DPh-T/79/80, J. Phys. (to appear).Google Scholar
  16. 16.
    D.V. Chudnovsky, Lett. Nuovo Cimento, 26 (1979), pp. 423–427.Google Scholar
  17. 17.
    D.V. Chudnovsky, C.R. Acad. Sci. Paris A289 (1979), pp. A–438–A442.Google Scholar
  18. 18.
    D.V. Chudnovsky, Riemann monodromy problem, isomonodromy deformation equations and completely integrable systems. Lectures. Cargese Summer School on Mathematical Physics, June 1979, D. Reidel Publishing Company, Dordrecht, Holland (to appear).Google Scholar
  19. 19.
    D.V. Chudnovsky, The generalized Riemann-Hilbert problem and the spectral interpretation, Proc. Intl. Meeting “Nonlinear evolution equations and dynamical systems”, Lecce, Italy, July 1979, Lect. Notes Physics, Springer-Verlag (to be published).Google Scholar
  20. 20.
    D.V. Chudnovsky, Saclay preprint DPh-T/79/38, Nuovo Cimento B (to appear).Google Scholar
  21. 21.
    D.V. Chudnovsky, International Congress of Mathematicians, Helsinki, Finland 1978, Abstract of short communications, p. 183; Notices of the AMS, 26(1979), No. 1, Abstract 763-35-10, p. A-83-A-84.Google Scholar
  22. 22.
    D.V. Chudnovsky and G.V. Chudnovsky, Nuovo Cimento, 40B (1977), pp. 339–353.Google Scholar
  23. 23.
    D.V. Chudnovsky and G.V. Chudnovsky, Seminaire sur les equations non-lineaires I (1977–1978), Centre de Mathematiques, Ecole Polytechnique, pp. 300.Google Scholar
  24. 24.
    D.V. Chudnovsky and G.V. Chudnovsky, Lett. Nuovo Cimento 22 (1978), pp. 31–36; pp. 47–51.Google Scholar
  25. 25.
    D.V. Chudnovsky and G.V. Chudnovsky, C.R. Acad. Sci. Paris A286 (1978), pp. A–1075–A–1078.Google Scholar
  26. 26.
    D.V. Chudnovsky and G.V. Chudnovsky, Phys. Lett, A., 72A (1979), pp. 291–293.Google Scholar
  27. 27.
    D.V. Chudnovsky and G.V. Chudnovsky, Saclay preprint, Dph-T/79/110. 2. Phys. D (to appear).Google Scholar
  28. 28.
    D.V. Chudnovsky and G.V. Chudnovsky, Seminar on Spectral Theory, Riemann Problem and Complete Integrability, IHES 1979, Paris (to be published); G.V. Chudnovsky, Padé approximation and the Riemann monodromy problem. Lectures. Cargese Summer School on Mathematical Physics, June 1979, D. Reidel Publishing Company, Dordrecht, Holland (to appear).Google Scholar
  29. 29.
    G. Darboux, C.R. Acad. Sci. Paris, 94 (1882), p. 1456.Google Scholar
  30. 30.
    P. Deift, E. Trubowitz, Comm. Pure Appl. Math. 32 (1979), 121–200.Google Scholar
  31. 31.
    A. Degasperis, Lecture Notes in Physics, v. 80, Springer, 1978.Google Scholar
  32. 32.
    J. Drach, C.R. Acad. Sci. Paris 167 (1918), pp. 743–746; C.R. Acad. Sci: Paris 168(1919), pp. 47–50; pp. 337–340.Google Scholar
  33. 33.
    B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Russian Math. Survey 31 (1976), 59.Google Scholar
  34. 34.
    B.A. Dubrovin, Funct. Anal. 11 (1977), No. 4, 28–41.Google Scholar
  35. 35.
    R. Gamier, Circolo Math. Palermo, 43 (1919), pp. 155–191.Google Scholar
  36. 36.
    I.M. Gelfand, L.A. Dikij, Funct. Anal. 10 (1976), No. 1, pp. 17–25.Google Scholar
  37. 37.
    I.M. Gelfand, L.A. Dikij, Russian Math. Survey 20 (1975), No. 5, 77.Google Scholar
  38. 38.
    I.M. Gelfand, L.A. Dikij, Funct. Anal. Appl. 13 (1979), No. 1, pp. 7–20.Google Scholar
  39. 39.
    H. Grosse, Institut of Theor. Phys., Univ. Wien, UWThPh-1979-19 (to appear).Google Scholar
  40. 40.
    J. Honerkamp, Freiburg, 12p. Preprint THEP 79/8, (see this Les Houches volume).Google Scholar
  41. 41.
    C. Jacobi, Vorlesunger über Dynamic, Berlin, 1843.Google Scholar
  42. 42.
    D. Kaup, J. Math. Anal. Appl. 59 (1976), 849–864.CrossRefGoogle Scholar
  43. 43.
    W. Koppelman, J. Math. and Mach. (1961), pp. 247–277.Google Scholar
  44. 44.
    S. Kowalevski, Letters to Mittag-Leffler, Letter from 21 November, 1881. Correspondence, Published by the Academy of Sciences, USSR, 1948; S. Kowalevski, Acta Math., 12(1889), pp. 177–232; Acts. Math. 14(1890).Google Scholar
  45. 45.
    M.G. Krein, M.A. Krasnoselsky, Uspekhi Math. Nauk 2 (1947), No. 3, 60–106.Google Scholar
  46. 46.
    J.M. Kritchiver, S.P. Novikov, Funct. Anal. Appl. 12 (1978), pp. 41–52.Google Scholar
  47. 47.
    P.D. Lax, Commun. Pure Appl. Math. 21 (1968), pp. 467–490; P.D. Lax, Comm. Pure Appl. Math. 28(1975), pp. 141–200.Google Scholar
  48. 48.
    B.M. Levitan, Math. Sbornik 76 (1968), pp. 239–270.Google Scholar
  49. 59.
    H.P. McKean, P. van Moerbeke, Invent. Math., 30 (1975), pp. 217–300.CrossRefGoogle Scholar
  50. 50.
    H.P. McKean, E. Trubowitz, Comm. Pure Appl. Math. 29 (1976), pp. 143–226.Google Scholar
  51. 51.
    O. Neumann, J. Reine Augew. Math. 56 (1859), pp. 46–63.Google Scholar
  52. 52.
    A.C. Newell, Proc. Royal Soc. London, A365 (1979), pp. 283–311.Google Scholar
  53. 53.
    L.P. Niznik, Nonstationary inverse scattering problem, Naukova Dumka, Kiev, 1973.Google Scholar
  54. 54.
    K. Pohlmeyer, K. H. Rehren, Freiburg Preprint 1979, J. Math. Phys. (to appear); Comm. Math. Phys. 46(1976), 207–221; Freiburg Priprint THEP 7916.Google Scholar
  55. 55.
    L. Schlesinger, J. für Reine Angew. Math. 141 (1912), pp. 96–145.Google Scholar
  56. 56.
    E.K. Sklvanin, L.A. Takhtadjan, L.D. Fadeev, LOMI preprint P-I-79. Leningrad, 1979, pp. 35.Google Scholar
  57. 57.
    H.B. Thacker, D.Wilkinson, Fermilab, pub. 79/19-TRY, February 1979 (to appear)Google Scholar
  58. 57.
    H.B. Thacker, Phys. Rev. D 17 (1978), 1031.CrossRefGoogle Scholar
  59. 58.
    V.E. Zakharov, A.V. Mikhailov, Zr. Eksp. Teor. Fis. 74 (1978), No. 6, pp. 1053–1973.Google Scholar
  60. 59.
    V.E. Zakharov, A.B. Shabat, Funct. Anal. Appl. 8 (1974), No. 3, pp. 54–56; Funct. Anal. Appl. 13(1979), No. 3, pp. 13–22.Google Scholar
  61. 60.
    J.L. Gervais, A. Neveu, E.N.S. Preprint (to be published).Google Scholar
  62. 61.
    E. Borel, Lectures on divergent series, Paris 1928 (English translation ed. by J. Gammel, Los Alamos, LA-6140-TR, 1975).Google Scholar
  63. 62.
    D.V. Chudnovsky, Proc. Natl. Acad. Sci., USA, 75 (1978), pp. 4082–4084; Lett. Nuovo Cimento 25(1979), pp. 263–265. *** DIRECT SUPPORT *** A3418084 00007Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • D. V. Chudnovsky
    • 1
  1. 1.CEN-SaclayGif-sur-YvetteFrance

Personalised recommendations