Advertisement

Asymptotic behaviour of Feynman integrals

  • M. C. Bergere
Part III General Structure of Green Functions and Collission Amplitudes
Part of the Lecture Notes in Physics book series (LNP, volume 126)

Keywords

Asymptotic Behaviour Green Function Meromorphic Function FEYNMAN Integral Connected Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]a
    A.Peterman, E.C.G.Stückelberg, Helv.Phys.Acta, 26, 499 (1953).Google Scholar
  2. [1]b
    M.Gell-Mann, F.E.Low, Phys.Rev. 95, 1300 (1954).CrossRefGoogle Scholar
  3. [2]
    N.Nakanishi, Suppl.Prog.Theor.Phys. 43, 1 (1969).Google Scholar
  4. [3]a
    K.G.Wilson, Phys.Rev. B.4, 3174 (1971); 3184 (1971).Google Scholar
  5. [3]b
    K.G.Wilson, J.B.Kogut, Phys.Reports 12C, 75 (1974).CrossRefGoogle Scholar
  6. [4]a
    C.G.Callan, Phys.Rev. D.2, 1541 (1970).Google Scholar
  7. [4]b
    K.Symanzik, Comm.Math.Phys. 18, 227 (1970); 23, 49 (1971).CrossRefGoogle Scholar
  8. [5]a
    K.G.Wilson, W.Zimmermann, Comm.Math.Phys. 24, 87 (1972).CrossRefGoogle Scholar
  9. [5]b
    W.Zimmermann, Ann.Physics 77 (1973) 570.CrossRefGoogle Scholar
  10. [5]c
    S.A.Anikin and O.I.Zavialov, Ann.Physics 116, 135 (1978).CrossRefGoogle Scholar
  11. [6]a
    S.Weinberg, Phys.Rev. 118, 838 (1960).CrossRefGoogle Scholar
  12. [6]b
    P.Cvitanovic, T.Kinoshita, Phys.Rev. D.10, 3978, 3991 (1974).Google Scholar
  13. [7]a
    M.C.Bergére, Y.M.P.Lam, Comm.Math.Phys. 39, 1 (1974); “Asymptotic expansion of Feynman amplitudes, part.II. The divergent case”. Freie Universität Berlin HEP (May 74/9).CrossRefGoogle Scholar
  14. [7]b
    M.C.Bergère, C.Gilain, J.Math.Phys. 19, 1495 (1978).CrossRefGoogle Scholar
  15. [7]c
    M.C.Bergére, C.de Calan, “Regge pole behaviour from perturbative scalar field theories” DPh-T preprint n°79/7, to be published in Phys.Rev.Google Scholar
  16. [8]a
    A.N.Vartchenko, Functional analysis and its applications 10, 13 (1976).Google Scholar
  17. [8]b
    A.G.Kouchnirenko, Inventiones Mathematicae 32, 1 (1976).CrossRefGoogle Scholar
  18. [9]
    M.C.Bergère, C.de Calan, A.P.C.Malbouisson, Comm.Math.Phys. 62, 137 (1978).CrossRefGoogle Scholar
  19. [10]a
    A.P.C.Malbouisson, “Comportement Asymptotique des Amplitudes de Feynman”, Doctoral Thesis, Paris VI (1978).Google Scholar
  20. [10]b
    C.de Calan, A.P.C.Malbouisson, “Complete Mellin representation and asymptotic behaviours of Feynman amplitudes”, Ecole Polytechnique preprint A.318 (Sept. 1979).Google Scholar
  21. [11]
    M.C.Bergère, F.David, J.Math.Phys. 20, 1244 (1979).CrossRefGoogle Scholar
  22. [12]
    M.C.Bergère, Y.M.P.Lam, J.Math.Phys. 17, 1546 (1976). *** DIRECT SUPPORT *** A3418084 00005CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. C. Bergere
    • 1
  1. 1.Gif-sur-YvetteFrance

Personalised recommendations