Advertisement

Rational and Padé approximations to solutions of linear differential equations and the monodromy theory

  • G. V. Chudnovsky
Part II Miscellaneous Mathematical Developments
Part of the Lecture Notes in Physics book series (LNP, volume 126)

Keywords

Linear Differential Equation Monodromy Matrix Monodromy Group Remainder Function Exponential Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Riemann, Oeuvres Mathematiques, A Blanchard, Paris, 1968.Google Scholar
  2. 2.
    G. V. Chudnovsky, Padé approximation and the Riemann problem, Lectures, Cargese summer school on mathematical physics, June 1979, Reidel Publishing Company, Dordrecht, Holland, 1979, 62 pp.Google Scholar
  3. 3.
    J. A. Lappo-Danilevski; Mat. Sbornik, 34 (1927), 113–148.Google Scholar
  4. 4.
    J. Plemelj, Problems in the sense of Riemann and Klein, John Wiley, 1964.Google Scholar
  5. 5.
    E. Hille, Ordinary differential equations in the complex domain, John Wiley, 1976.Google Scholar
  6. 6.
    A. R. Forsyth, Theory of differential equations, VI volumes, Dover, 1959.Google Scholar
  7. 7.
    I. L. Ince, Ordinary differential equations, Dover, 1959.Google Scholar
  8. 8.
    V. V. Golubev, Lectures on the analytic theory of differential equations, GTIL, Moscow, 1950.Google Scholar
  9. 9.
    L. Fuchs, Gesammelte Mathematische werke, Bd. 1–3, Berlin, 1900–1906.Google Scholar
  10. 10.
    J. A. Lappo-Danilevski, Mémoires sur la théorie des systémes des équations différentielles linéaires, Chelsea, NY, 1953.Google Scholar
  11. 11.
    L. Markus, Group theory and differential equations, Lecture notes, University of Minnesota, 1959–1960.Google Scholar
  12. 12.
    D. V. Chudnovsky, Riemann monodromy problem, isomonodromy deformation equations and completely integrable systems, Lectures, Cargese summer school on mathematical physics, June 1979, Reidel Publishing Company, Dordrecht, Holland, 1979, 61 pp.Google Scholar
  13. 13.
    D. V. Chudnovsky, Proceedings of the International Meeting “Nonlinear evolution equations and dynamical systems,” Lecce, Italy, June 1979, Lect. Not. Phys., Springer, 1979 (to appear).Google Scholar
  14. 14.
    D. V. Chudnovsky and G. V. Chudnovsky, CEN-Saclay Preprint DPh-t-79/115. Seminar on the Riemann problem.Google Scholar
  15. 15.
    G. V. Chudnovsky a) C.R. Acad. Sci. Paris, 288A (1979), pp. A–607–A609; b) C.R. Acad. Sci., 286A (1970), pp. A-965–A-967.Google Scholar
  16. 16.
    G. V. Chudnovsky, a) C.R. Acad. Sci. Paris, 288A (1979), pp. A–1001–A–1004; b) J. Math. Pure Appl. v. 56 (1979), 32 pp.Google Scholar
  17. 17.
    G. V. Chudnovsky, a) Proceedings of the International Meeting “Nonlinear evolution equations and dynamical systems,” Lecce, Italy, June 1979, Lect. Not. Phys., Springer, 1979 (to appear), 60 pp.; b) Lect. Not. in Math., Springer, 1979, v. 751, pp. 45–69.Google Scholar
  18. 18.
    G. V. Chudnovsky, C.R. Acad. Sci. 289A (1980), pp. A–15–A–17.Google Scholar
  19. 19.
    Equations différentielles et systèmes de Pfaff dans le champ complexe Lect. Not. Math., v. 712, Springer, 1979.Google Scholar
  20. 20.
    K. Mahler, Composito Math., 19 (1968), 95–166.Google Scholar
  21. 21.
    H. Jager, Proc. Kon. Nederl. Wet. 67 (1964), 192–249.Google Scholar
  22. 22.
    J. H. Loxton, A. J. van der Poorten, Rocky Moun. J. Math., v. 9, 3 (1979), 385–393.Google Scholar
  23. 23.
    K. Mahler, Lectures on Transcendental Numbers, Lect. Not. Math., v. 546, Springer, 1976.Google Scholar
  24. 24.
    Bateman, A. Erdelyi. Higher Transcendental Functions, v. 1-3, London, 1953.Google Scholar
  25. 25.
    D. Brownawell, D. Masser (to appear).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. V. Chudnovsky
    • 1
  1. 1.CNRS - Paris and Columbia UniversityNew York

Personalised recommendations