Advertisement

Comportement semi classique du spectre d'un hamiltonien quantique

  • J. Chazarain
Part II Miscellaneous Mathematical Developments
Part of the Lecture Notes in Physics book series (LNP, volume 126)

Keywords

Fundamental Solution Duke Math Distribution Asymptotique Partial Diff Semi CLASSIQUE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. ASADA et D. FUJIWARA Jap. J. of Math. Vol. 4, n° 2, 1978, p. 299–361.Google Scholar
  2. [2]
    R. BALIAN et C. BLOCH Ann. of Physics, vol. 85, 2, 1974, p. 514–545.CrossRefGoogle Scholar
  3. [3]
    R. BEALS Duke Math. J. 42, 1, 1975, p 1–42.CrossRefGoogle Scholar
  4. [4]
    M.V. BERRY et K.E. MOUNT Rep. Prog. Phys., 35, 1972, p. 315–397.CrossRefGoogle Scholar
  5. [5]
    M.V. BERRY et M. TABOR J. Phys. A, vol. 10, n°3, 1977, p. 371–374.Google Scholar
  6. [6]
    J. CHAZARAIN Inv. Math. 24, 1974, p. 75–82.CrossRefGoogle Scholar
  7. [7]
    J. CHAZARAIN C.R. Acad. Sc. 288, 1979, p. 725–728.Google Scholar
  8. [8]
    J. CHAZARAIN C.R. Acad. Sc. 288, 1979, p. 895–897.Google Scholar
  9. [9]
    Y. COLIN DE VERDIERE Inv. Math. 43, 1977, P. 15–52.CrossRefGoogle Scholar
  10. [10]
    Y. COLIN DE VERDIERE Duke Math. J. 46, 1979, p. 169–182.CrossRefGoogle Scholar
  11. [11]
    Y. COLIN DE VERDIERE C.R. Acad. Sc. 286, 1978, p. 1195–1197.Google Scholar
  12. [12]
    J.J. DUISTERMAAT Comm. Pure Appl. Math. 27, 1974, p. 207–281.Google Scholar
  13. [13]
    J.J. DUISTERMAAT et V. GUILLEMIN Inv. Math., 29, 1975, P. p. 39–79.CrossRefGoogle Scholar
  14. [14]
    D. FUJIWARA Proc. Jap. Acad. 54, 1978, p. 62–66.Google Scholar
  15. [15]
    V. GUILLEMIN et S. STERNBERG Geometric Asymptotics A.M.S., 1977Google Scholar
  16. [16]
    H. KITADA On the fundamental solution for schrödinger equations (à paraître).Google Scholar
  17. [17]
    J. LERAY Analyse lagrangienne et mécanique quantique, equations (à paraître). Collége de France 1976–77.Google Scholar
  18. [18]
    V.P. MASLOV Théorie des perturbations et méthodes asymptotiques, Dunod, 1972.Google Scholar
  19. [19]
    D. ROBERT Comm. Partial Diff. Equat. 3, 1978, p. 755–826.Google Scholar
  20. [20]
    A. VOROS Développements semi-classiques, thése, Orsay, 1977.Google Scholar
  21. [21]
    A. WEINSTEIN Duke Math. J. 44, 1977, p. 883–892.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Chazarain

There are no affiliations available

Personalised recommendations