Advertisement

Conditions de positivité dans une variété symplectique complexe . Applications à l'étude des microfonctions

  • Pierre Schapira
Part I Microfunctions, Microlocal Calculus and Related Topics
Part of the Lecture Notes in Physics book series (LNP, volume 126)

Keywords

Fourier Integral Operator Pseudodifferential Equation Conormal Bundle Positive Project Real Analytic Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    L. BOUTET de MONVEL: Convergence dans le domaine complexe des séries de fonctions propres. C.R. Acad. Sc. Paris, t. 287 (1978) 855–856.Google Scholar
  2. [2]
    A. MELIN, J. SJOSTRAND: Fourier integral operators with complex valued phase functions. Lecture Notes in Math. 459 Springer (1975) 120–223.Google Scholar
  3. [3]
    A. MELIN, J. SJOSTRAND: Fourier integral operator with complex phase functions and parametrix for an interior boundary value problem. Comm. in Partial Diff. Eq. 1 (1976), 313–400.Google Scholar
  4. [4]
    M. KASHIWARA. Systèmes micro-différentiels. Publ. Université PARIS-NORD (1976-77) et séminaires U.P.N. (76–77) non publiés.Google Scholar
  5. [5]
    M. KASHIWARA, T. KAWAI: Some applications of boundary value problems for elliptic systems of linear differential equations. Ann. Princeton. 0772 1150 V 3 of Math. Studies, n° 93, Princeton Univ. Press. A paraitre. 0772 1150 V 3Google Scholar
  6. [6]
    M. SATO, T. KAWAI, M. KASHIWARA: Hyperfunctions and pseudodifferential equations. Lecture Notes in Mat. 287, Springer (1973), 265–529.Google Scholar
  7. [7]
    P. SCHAPIRA: Conditions de positivité dans une variété symplectique complexe. Applications à l'étude de l'hypo-ellipticité analytique. (Résumé). Rencontre sur les E.D.P. linéaires Saint-Cast, Mai 1979 et article à paraitre.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Pierre Schapira
    • 1
  1. 1.Département de MathématiquesC.S.P. Université Paris-NordVILLETANEUSE

Personalised recommendations