Sur le problème de Hilbert-Riemann

  • Zoghman Mebkhout
Part I Microfunctions, Microlocal Calculus and Related Topics
Part of the Lecture Notes in Physics book series (LNP, volume 126)


Cohomologie Locale Cohomologique Comme Dimension Finie Nous Renvoyons Nous Appellerons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BERNSTEIN I.N.-The Analytic Continuations of Generalized Functions with Respect to a Parameter. Functional Anal. Appl. 6, 26–40 (1972).Google Scholar
  2. [2]
    BJÖRK J.E.-Rings of Differential Operators. North-Holland, Amsterdam (1979).Google Scholar
  3. [3]
    DELIGNE P.-Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Math. n° 163, Berlin, Heidelberg, New York (1970).Google Scholar
  4. [4]
    GROTHENDIECK A.-On the De Rham Cohomology of Algebraic Varieties. Publ. Math I.H.E.S. n° 29, 93–103 (1966).Google Scholar
  5. [5]
    KATZ N.-The Regularity Theorem in Algebraic Geometry. Actes Congrès International des Mathématiciens de Nice, 1970, vol. I, 436–449. Gauthier-Villards, Paris.Google Scholar
  6. [6]
    KATZ N.-An Overview of Deligne's Work in Hilbert's Twenty-first Problem. Proceedings of Symposia in Pure Mathematics A.M.S., vol. 28, 537–557 (1976).Google Scholar
  7. [7]
    HIRONAKA I.-Resolution of Singularities on an Algebraic Variety over a Field of Characteristic Zero. I–II Ann. of Math n°1 and n°2 (1964).Google Scholar
  8. [8]
    KASHIWARA M.-On the Maximally Overdetermined Systems of Linear Differential Equations I. Publ. R.I.M.S. Kyoto University 10, 563–579 (1975).Google Scholar
  9. [9]
    KASHIWARA M.-B-Functions and Holonomic Systems. Invent. Math. 38, 33–53 (1976).CrossRefGoogle Scholar
  10. [10]
    KASHIWARA M., OSHIWA I.-System of Differential Equations with Regular Singularities and their Boundary Value Problem. Ann. of Math. 106, 145–200 (1977).Google Scholar
  11. [11]
    LÊ D.T.-Some Remarks on Relative Monodromy. Nordic Summer School I.N.A.V.F. Symposium in Mathematics. Oslo, August 5–25, (1976). Sijthoff Noordhoof (1977).Google Scholar
  12. [12]
    MAKGRANGE B.-Sur les Points Singuliers Réguliers des Equations Différentielles. Enseignement Math. 20, 147–176 (1974).Google Scholar
  13. [13]
    MALGRANGE B.-Le Polynôme de I.N. Bernstein d'une Singularité Isolée. Lecture Notes in Math. n° 459, 99–119. Berlin, Heidelberg, New York, Springer. (1976).Google Scholar
  14. [14]
    MEBKHOUT Z.-La Valeur Principale des Fonctions à Singularités Essentielles. C.R. Acad. Sc. Paris 280, 205–207 (1975).Google Scholar
  15. [15]
    MEBKHOUT Z.-La valeur Principale et le Résidu Simple des Formes à Singularités Essentielles. In Fonctions de Plusieurs Variables Complexes II. Lecture Notes in Math. n° 482, 190–215, Berlin, Heidelberg, New York, Springer (1975).Google Scholar
  16. [16]
    MEBKHOUT Z.-La Cohomologie Locale d'une Hypersurface. In Fonctions de Plusieurs Variables Complexes III. Lecture Notes in Math. n°670, 89–119, Berlin, Heidelberg, New York, Springer (1977).Google Scholar
  17. [17]
    MEBKHOUT Z.-Local Cohomology of Analytic Spaces. Publ. R.I.M.S. University 12, 247–256, suppl. (1977).Google Scholar
  18. [18]
    MEBKHOUT Z.-Théorèmes de Dualité pour les Dg-Modules Cohérents. C.R. Acad. Sc. Paris 285, 785–787 (1977).Google Scholar
  19. [19]
    MEBKHOUT Z.-Cohomologie Locale des Espaces Analytiques Complexes. Thèse de Doctorat d'Etat, University de Paris VII (1978), 126 pages. Soutenue le 15.2.1979.Google Scholar
  20. [20]
    MEBKHOUT Z.-Dualité de Poincaré. Séminaire sur “Singularités” de Paris VII. 1977–1979. Publ. de l'Université de Paris VII (à paraitre).Google Scholar
  21. [21]
    MEBKHOUT Z.-The Poincaré-Serre-Verdier Duality. Proceeding of the Conf. of Algebraic Geometry, Copenhague (1978). Lecture Notes in Math. n°732, Berlin, Heidelberg, New York, Springer (1979).Google Scholar
  22. [22]
    SATO M., KAWAI T., KASHIWARA M.-Micro-Functions and Pseudo-Differential Equations. Lecture Notes in Math. n° 287, 265–529. Berlin, Heidelberg, New York, Springer (1973).Google Scholar
  23. [23]
    VERDIER J.L.-Classe d'Homologie Associée à un cycle. Séminaire Douady-Verdier Astérisque 36-37, 101,151 (1976).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Zoghman Mebkhout

There are no affiliations available

Personalised recommendations