The theory of holonomic systems with regular singularities and its relevance to physical problems

  • Masaki Kashiwara
  • Takahiro Kawai
Part I Microfunctions, Microlocal Calculus and Related Topics
Part of the Lecture Notes in Physics book series (LNP, volume 126)


Holomorphic Function Linear Differential Equation Left Ideal Comparison Theorem Infinite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bony, J. M. and P. Schapira: Propagation des singularité analytiques pour les solutions des équations aux dérivées partielles. Ann. Inst. Fourier, Grenoble, 26, 81–140 (1976).Google Scholar
  2. [2]
    Deligne, P.: Equations differentielles à points singuliers réguliers. Lecture Notes in Math. No.163, Berlin-Heidelberg-New York: Springer, 1970.Google Scholar
  3. [3]
    Iagolnitzer, D.: The u=0 structure theorem. Commun. math. Phys., 63, 49–96 (1978).Google Scholar
  4. [4]
    Kashiwara, M.: On the maximally overdetermined system of linear differential equations, I. Publ. RIMS, Kyoto Univ., 10, 563–579 (1975).Google Scholar
  5. [5]
    —: On the holonomic systems of linear differential equations. II. Inventiones math., 49, 121–135 (1978).CrossRefGoogle Scholar
  6. [6]
    Kashiwara, M. and T. Kawai: Micro-hyperbolic pseudo-differential operators I. J. Math. Soc. Japan, 27, 359–404 (1975).Google Scholar
  7. [7]
    —: Micro-local properties of \(\mathop \Pi \limits_{j = 1}^n f_{j^ + }^{S_j } \). Proc. Japan Acad., 51, 270–272 (1975).Google Scholar
  8. [8]
    —: Finiteness theorem for holonomic systems of micro-differential equations. Proc. Japan Acad., 52, 341–343 (1976).Google Scholar
  9. [9]
    —: Holonomic character and local monodromy structure of Feynman integrals. Commun. math. Phys., 54, 121–134 (1977).CrossRefGoogle Scholar
  10. [10]
    —: Holonomic systems of linear differential equations and Feynman integrals. Publ. RIMS, Kyoto Univ., 12 Suppl., 131–140 (1977).Google Scholar
  11. [11]
    —: On the characteristic variety of a holonomic system with regular singularities. Adv. in Math, 34, 163–184 (1979).CrossRefGoogle Scholar
  12. [12]
    —: On holonomic systems of micro-differential equations. III —Systems with regular singularities—. To appear. (RIMS Preprint No.293.)Google Scholar
  13. [13]
    Kashiwara, M., T. Kawai and T. Oshima: A study of Feynman integrals by micro-differential equations. Commun. math. Phys., 60, 97–130 (1978).CrossRefGoogle Scholar
  14. [14]
    Kashiwara, M., T. Kawai and H. P. Stapp: Micro-analyticity of the S-matrix and related functions. Commun. math. Phys., 66, 95–130 (1979).CrossRefGoogle Scholar
  15. [15]
    Kawai, T. and H. P. Stapp: Discountinuity formula and Sato's conjecture. Publ. RIMS, Kyoto Univ., 12 Suppl., 155–232 (1977).Google Scholar
  16. [16]
    Malgrange, B.: Sur les points singuliers des équations — differentielles. Enseignement Math. 20, 147–176 (1974).Google Scholar
  17. [17]
    Mebkhout, Z.: Local cohomology of analytic spaces. Publ. RIMS, Kyoto Univ., 12 Suppl., 247–256 (1977).Google Scholar
  18. [18]
    Oshima, T.: Singularities in contact geometry and degenerate pseudo-differential equations. J. Fac. Sci. Univ. Tokyo, IA, 21, 43–83 (1974).Google Scholar
  19. [19]
    Ramis, J. P.: Variations sur le theme “GAGA”. Lecture Notes in Math. No.694, pp.228–289, Berlin-Heidelberg-New York: Springer, 1978.Google Scholar
  20. [20]
    Sato, M.: Recent development in hyperfunction theory and its application to physics. Lecture Notes in Phys. No.39, pp. 36–48, Berlin-Heidelberg-New York: Springer, 1975.Google Scholar
  21. [21]
    Sato, M., T. Kawai and M. Kashiwara: Microfunctions and pseudo-differential equations. Lecture Notes in Math. No.287, pp. 265–529. Berlin-Heidelberg-New York: Springer, 1973.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Masaki Kashiwara
    • 1
    • 2
  • Takahiro Kawai
    • 3
  1. 1.Départment de MathématiquesUniversité de Paris-SudOrsayFrance
  2. 2.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  3. 3.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations