Advertisement

Mechanical, electrodynamical and thermodynamical properties of black holes

  • Thibaut Damour
Theoretical aspects of general relativity
Part of the Lecture Notes in Physics book series (LNP, volume 124)

Keywords

Black Hole Eddy Current Bulk Viscosity Null Geodesic Field Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example Ruffinj,, R., this volume.Google Scholar
  2. 2.
    See for example Cavaliere, A., this volume.Google Scholar
  3. 3.
    See for example Amaldi, E., this volume.Google Scholar
  4. 4.
    See for example Blair, D., this volume.Google Scholar
  5. 5.
    See for example Hirakawa, H., this volume.Google Scholar
  6. 6.
    See for example Richard, J.P., this volume.Google Scholar
  7. 7.
    See for example Carter, B., in Black HoZes, C. DeWitt and B.S. DeWitt ed., Gordon and Breach, N.Y. (1973).Google Scholar
  8. 8.
    See e.g. Hawking, S.W., in Black Holes, C. DeWitt and B.S. DeWitt ed., Gordon and Breach, N.Y. (1973).Google Scholar
  9. 9.
    See e.g. Ruffini, R., in Black Holes, C. DeWitt and B.S. DeWitt ed., Gordon and Breach, N.Y. (1973).Google Scholar
  10. 10.
    Fackerell, E., this volume.Google Scholar
  11. 11.
    Damour, T., 9th Texas Symposium on Relativistic Astrophysic, Munich (1978) and Thése de doctorat d'Etat és Sciences, Paris VI (10 January 1979).Google Scholar
  12. 12.
    Damour, T., Black hole eddy currents, Phys.Rev.D., in print.Google Scholar
  13. 13.
    Bekenstein, J.D., Phys.Rev., D 7, 2333 (1973).Google Scholar
  14. 14.
    See e.g. Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space Time, Cambridge U.P. (1973).Google Scholar
  15. 15.
    See reference 9.Google Scholar
  16. 16.
    Lower case latin indices run from 0 to 3, upper case latin indices.run from 2 to 3, xo=t, G=c=1.Google Scholar
  17. 17.
    Hajicek, P., Journ.Math.Phys., 16, 518 (1975).Google Scholar
  18. 18.
    For a different approach to the electric conductivity of black holes see R.L. Znajek, Mon.Not.Roy.Astr.Soc., 185, 833 (1978).Google Scholar
  19. 19.
    Hawking, S.W., Commun.Math.Phys., 43, 199 (1975).Google Scholar
  20. 20.
    Dirac, P.A.M., Proc.Roy.Soc., 167A, 148 (1938). It is possible to do so because of the similarity between the boundary conditions at t = +-.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Thibaut Damour
    • 1
    • 2
  1. 1.Groupe d'Astrophysique Relativiste Observatoire de ParisMeudonFrance
  2. 2.Istituto di FisicaUniversité degti StudiRomeItaly

Personalised recommendations