Advertisement

Stationary axisymmetric gravitational fields: An asymptotic flatness preserving transformation

  • Christopher M. Cosgrove
Theoretical aspects of general relativity
Part of the Lecture Notes in Physics book series (LNP, volume 124)

Keywords

Linear Ordinary Differential Equation Infinitesimal Transformation Kerr Solution Asymptotic Flatness Conjugate Harmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geroch, R., T.Hath.Phys., 13, 394–404 (1972).Google Scholar
  2. 2.
    Kinnersley, W. and Chitre, D.M., J.Math.Phys., 19, 2037–42 (1978).Google Scholar
  3. 3.
    Hoenselaers, C., Kinnersley, W. and Xanthopoulos, B.C., Preprint, to appear in Phys.Rev.Lett., (1978).Google Scholar
  4. 4.
    Cosgrove, C.M., J.Phys.A:Math.Gen., 10, 1481–1524 (1977).Google Scholar
  5. 5.
    Cosgrove, C.M., J.Phys.A:Math.Gen., 10, 2093–2105 (1977).Google Scholar
  6. 6.
    Cosgrove, C.M., Ph.D. Thesis, University of Sydney, (1979).Google Scholar
  7. 7.
    Cosgrove, C.M., J.Phys.A:Math.Gen., 11, 2405–2430 (1978).Google Scholar
  8. 8.
    Tomimatsu, A. and Sato, H., (TS) Prog.Theor.Phys., 50, 95–110 (1973).Google Scholar
  9. 9.
    Lewis, T., Proc.R.Soc., A 136, 176–92 (1932).Google Scholar
  10. 10.
    Ehlers, J., “Les théories relativistes de Za gravitation”, (Paris: CNRS),(1959).Google Scholar
  11. 11.
    Ernst, F.J., Phys.Rev., 167, 1175–8 (1968).Google Scholar
  12. 12.
    Cosgrove, C.M., J.Phys.A:Math.Gen., 11, 2389–2404 (1978).Google Scholar
  13. 13.
    Eisenhart, L.P., “Continuous groups of transformations”, Reprinted 1961 (New York: Dover), (1933).Google Scholar
  14. 14.
    Yamazaki, M. and Hori, S., Prog.Theor.Phys.(Letters), 57, L696–7 (1977).Google Scholar
  15. 15.
    Dale, P., Private communication (1977).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Christopher M. Cosgrove
    • 1
  1. 1.Department of Applied MathematicsUniversity of SydneySydneyAustralia

Personalised recommendations