Advertisement

Some aspects of supernova theory: Implosion, explosion and expansion

  • I. Lerche
Theoretical aspects of relativistic astrophysics
Part of the Lecture Notes in Physics book series (LNP, volume 124)

Keywords

Neutron Star Shock Front Radio Emission Relativistic Electron Supernova Remnant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Radiophysics Publication RPP 2271, January 1979.

  1. 1.
    Brancazio, P.J. and Cameron, A.G.W. (Eds.), Supernovae and Their Remnants, Gordon and Breach, London, (1969).Google Scholar
  2. 2.
    Thorne, K.S., in Supernovae and Their Remnants, (Eds. P.J. Brancazio and A.G. Cameron), p. 165, Gordon and Breach, London, (1969).Google Scholar
  3. 3.
    Caswell, J.L., These proceedings, (1979).Google Scholar
  4. 4.
    Woltjer, L., Annu.Rev.Astron.Astrophys., 10, 129 (1972).Google Scholar
  5. 5.
    Colgate, S., in Neutron Stars, Black Holes and Binary X-Ray Sources, (Eds. H. Gursky and R. Ruffini), p. 13 Reidel, Dordrecht, (1975).Google Scholar
  6. 6.
    We are assuming a core of mass Mc≳1.4 MQ-the Chadrasekhar limit. For Mc≲1.4 MQ, electron degeneracy pressure will be sufficient to prevent the core from collapsing. As long as the overlying material is not too massive the star then quietly evolves to the white dwarf stage without any cataclysmic outburst. Numerical calculations [10–12,15] indicate that evolution to the white dwarf stage occurs for a star of total mass M≾2-3 MQ.Google Scholar
  7. 7.
    Oppenheimer, J.R. and Volkoff, G.M., Phys.Rev. 55, 374 (1939).Google Scholar
  8. 8.
    Bahcall, J.N. and Wolf, R.A., Phys.Rev., 140, B1452 (1965).Google Scholar
  9. 9.
    Ruderman, M., Annu.Rev.Astron.Astrophys., 10, 427 (1972).Google Scholar
  10. 10.
    Colgate, S. and White, R.H., Astrophys. J., 143, 626 (1966).Google Scholar
  11. 11.
    Arnett, W.D., Can.J.Phys., 44, 2553 (1966).Google Scholar
  12. 12.
    Arnett, W.D., Can.J.Phys., 45, 1621 (1967).Google Scholar
  13. 13.
    Arnett, W.D., Nature, 219, 1344 (1968).Google Scholar
  14. 14.
    Arnett, W.D., Astrophys.Space.Sci., 5, 180 (1969).Google Scholar
  15. 15.
    Schwartz, R.A., Ann.Phys., 43, 42 (1969).Google Scholar
  16. 16.
    Hansen, C.J., Ph.D. Thesis, Yale University, (1966).Google Scholar
  17. 17.
    A cold neutron core of ∼1.4 MG in static equilibrium has a radius ∼106 cm. The neutrinos produced in the core provide a thermal pressure support to the neutronrich material; further, the core is dynamically evolving. The core radius is then larger than in the cold neutron core case.Google Scholar
  18. 18.
    Bahcall, J.N., Phys.Rev., 136, B1164 (1964).Google Scholar
  19. 19.
    Bruen, S.W., Arnett, W.D. and Schramm, D.N., Astrophys J., 213, 213 (1977).Google Scholar
  20. 20.
    Arnett, W.D., Astrophys. J., 218, 815 (1977)Google Scholar
  21. 21.
    Colvin, J.D., Van Horn, H.M., Starrfield, S.G. and Truran, J.W., Astrophys. J., 212, 791 (1977).Google Scholar
  22. 22.
    Lamb, S.A., Howard, W.M., Truran, J.W. and Iben, I., Astrophys. J., 217, 213 (1977).Google Scholar
  23. 23.
    For instance, the 28Si burning rate is roughly proportional to T40. A small increase in T can then easily initiate explosive burning.Google Scholar
  24. 24.
    Wilson, J.R., Phys.Rev.Lett., 32, 849 (1974).Google Scholar
  25. 25.
    Falk, S.W. and Arnett, W.D., Astrophys.J.Suppl.Ser., 33, 515 (1977).Google Scholar
  26. 26.
    Arnett, W.D., Astrophys.J.Suppl.Ser., 35, 145 (1977).Google Scholar
  27. 27.
    Wilson, J.R., Astrophys. J., 163, 209 (1971).Google Scholar
  28. 28.
    Couch, R.G. and Arnett, W.D., Astrophys. J., 180, L101 (1973).Google Scholar
  29. 29.
    Wheeler, J.C., Buchler, J.R. and Barkat, Z.K., Astrophys. J., 184, 897 (1973).Google Scholar
  30. 30.
    Buchler, J.R., in Supernovae and Supernova Remnants, (Ed. C.B. Cosmovici), p. 329, Gordon and Breach, London, (1974).Google Scholar
  31. 31.
    We have added the emphasis. It is currently believed [86] that pulsars possess strong surface magnetic fields (∼1012 G) and are “born” rotating rather rapidly (angular velocity ∼200-103 s−1). If stellar detonation does give rise to neutron stars, and if the observed pulsars are indeed these self-same neutron stars, then the questions of how a stellar core acquires the attributes of high spin and strong magnetic field (and of the dynamical influence of such effects on the collapse and detonation of the star) must be addressed if the theoretician's neutron stars are eventually to be incorporated in the mainstream of astrophysics. To our knowledge, no collapsing star models have yet been constructed incorporating these points.Google Scholar
  32. 32.
    Weinberg, S., Phys.Rev.Lett., 27, 1688 (1971).Google Scholar
  33. 33.
    Freedman, D.Z., National Accelerator Laboratory, Publ. B/76-TH7, Batavia,Illinois, (1973).Google Scholar
  34. 34.
    Woltjer, L., in Interstellar Gas Dynamics (I.A.U. Symp. No. 39), (Ed. H.J. Habing), p. 299, Reidel, Dordrecht. (1970).Google Scholar
  35. 35.
    Taylor, G.I., Proc.R.Soc.(Lond.), A201, 159, 175 (1950).Google Scholar
  36. 36.
    Sedov, L., Similarity and Dimensional Methods in Mechanics, Academic Press, New York, (1959).Google Scholar
  37. 37.
    In fact Solinger et al. [58] have demonstrated quantitatively for several SNRs of interest that neglecting the heat flux (the essence of the adiabatic approximation) is an extremely questionable assumption. Detailed fluid flows under the isothermal approximation (infinitaly rapid heat transfer) have been investigated by Korobeinikov [87], see also [57 ]; the question of stability of self-similar adiabatic fluid flows has recently come under intensive investigation [64,65].Google Scholar
  38. 38.
    Clark, D.H. and Caswell, J.L., Mon.Not.R.Astron.Soc., 174, 267 (1976).Google Scholar
  39. 39.
    Shklovsky, I.S., Astron.Zh., 37, 256 and (Soviet Astron-AJ, 4, 243)(1960).Google Scholar
  40. 40.
    van der Laan, H., Mon.Not.R.Astron.Soc., 124, 125 and 124, 179 (1962).Google Scholar
  41. 41.
    Duin, R.M. and Strom, R.G., Astron. Astrophys., 39, 33 (1975).Google Scholar
  42. 42.
    Strom, R.G. and Duin, R.M., Astron. Astrophys., 25, 351 (1973).Google Scholar
  43. 43.
    Duin, R.M. and van der Laan, H., Astron. Astrophys., 40, 111 (1975).Google Scholar
  44. 44.
    Hill, I.E., Mon.Not.R.Astron.Soc., 169, 59 (1974).Google Scholar
  45. 45.
    Moffat, P.H., Mon.Not.R.Astron.Soc., 153, 401 (1971).Google Scholar
  46. 46.
    Gull, S.F., Mon.Not.R.Astron.Soc., 161, 47 and 162, 135 (1973).Google Scholar
  47. 47.
    Scott, J.S. and Chevalier, R.A., Astrophys. J., 197, L5 (1975).Google Scholar
  48. 48.
    Whiteoak, J.B. and Gardner, F.F., Astrophys. J., 154, 807 (1968).Google Scholar
  49. 49.
    Caswell, J.L. and Lerche, I., Mon.Not.R.Astron.Soc., in press, (1978).Google Scholar
  50. 50.
    Shklovsky, I.S., Pis'ma Astron.Zh., 2, 244 (Soviet Astron.Lett. 2, 95) (1976).Google Scholar
  51. 51.
    Poveda, A. and Woltjer, L., Astron.J., 73, 65 (1968).Google Scholar
  52. 52.
    Kesteven, M.J.L., Aust.J.Phys., 21, 739 (1968).Google Scholar
  53. 53.
    Willis, A.G., Astron. Astrophys., 26, 237 (1973).Google Scholar
  54. 54.
    Webber, W.R., Proc.Astron.Soc.Aust., 3, 1 (1976).Google Scholar
  55. 55.
    Gull, S.F., Mon.Not.R.Astron.Soc., 171, 237 (1975).Google Scholar
  56. 56.
    Spitzer, L. Jr., Physics of Fully Ionized Gases, Interscience, New York, (1962).Google Scholar
  57. 57.
    Lerche, I. and Vasyliunas, V.M., Astrophys. J., 210, 85 (1976).Google Scholar
  58. 58.
    Solinger, A., Rappaport, S. and Buff, J., Astrophys. J., 201, 381 (1975).Google Scholar
  59. 59.
    Cox, D.P., Astrophys. J., 178, 159 (1972).Google Scholar
  60. 60.
    Rappaport, S., Doxsey, R., Solinger, A. and Borken, R., Astrophys. J., 194, 329 (1974).Google Scholar
  61. 61.
    Gorenstein, P., Harnden, F.R. Jr. and Tucker, W.H., Astrophys. J., 192, 661 (1974).Google Scholar
  62. 62.
    Winkler, P.F. and Clark, G.W., Astrophys.J.Lett., 191, L67 (1974).Google Scholar
  63. 63.
    In the adiabatic equations d appears in the combination λ17σ; thus the requirement σ → ∞ is particularly severe and can never be satisfied over the entire volume of the system.Google Scholar
  64. 64.
    Isenberg, P.A., Astrophys. J., 217, 597 (1977).Google Scholar
  65. 65.
    Bernstein, I.B. and Book, D.L., Astrophys. J., 225, 633 (1978).Google Scholar
  66. 66.
    Rosenberg, I. and Scheuer, P.G., Mon.Not.R.Astron.Soc., 161, 27 (1973).Google Scholar
  67. 67.
    Gull, S.F., In Supernovae and Supernova Remnants, (Ed. C.B. Cosmovici), p. 337, Reidel, Dordrecht, (1974).Google Scholar
  68. 68.
    Lerche, I. and Caswell, J.L., Astron. Astrophys., 77, 117 (1979).Google Scholar
  69. 69.
    Bell, A.R., Mon.Not.R.Astron.Soc., 179, 573 (1977).Google Scholar
  70. 70.
    Read, P.L., Mon.Not.R.Astron.Soc., 181, 63P (1977).Google Scholar
  71. 71.
    Stankevich, K., Aus.J.Phys., in press (1978).Google Scholar
  72. 72.
    Kulsrud, R.M., Bernstein, I,B., Kruskal, M., Fanucci, J. and Ness, N., Astrophys. J., 142, 491 (1965).Google Scholar
  73. 73.
    Bell, A.R., Gull, S.F. and Kenderdine, S., Nature, 257, 463 (1975).Google Scholar
  74. 74.
    Cox, D.P., Astrophys. J., 178, 143 (1972).Google Scholar
  75. 75.
    Cox, D.P., Astrophys. J., 178, 169 (1972).Google Scholar
  76. 76.
    Chevalier, R.A., Astrophys. J., 188, 501 (1974).Google Scholar
  77. 77.
    Straka, W.C., Astrophys. J., 196, 59 (1974).Google Scholar
  78. 78.
    Mansfield, V.N. and Salpeter, E.E., Astrophys. J., 190 305 (1974).Google Scholar
  79. 79.
    Parker, E.N., Astrophys. J., 117, 431 (1953).Google Scholar
  80. 80.
    Field, G.B., Astrophys. J., 142, 531 (1965).Google Scholar
  81. 81.
    McCray, R., Stein, R.F. and Kafatos, M., Astrophys. J., 196, 565 (1975).Google Scholar
  82. 82.
    Kafatos, M., Astrophys. J., 182, 443 (1973).Google Scholar
  83. 83.
    Schwartz, J., McCray, R. and Stein, R.F., Astrophys. J., 175, 673 (1972).Google Scholar
  84. 84.
    Chevalier, R.A. and Theys, J.C., Astrophys. J., 195, 53 (1975).Google Scholar
  85. 85.
    Radhakrishnan, V., Froc. I.A.U. Asian-South Pacific Regional Meeting, held Wellington, N.Z., December 1978, (1979).Google Scholar
  86. 86.
    Manchester, R.N. and Taylor, J.H., Pulsars, W.H. Freeman and Co., San Francisco, (1977).Google Scholar
  87. 87.
    Korobeinikov, B.P., J.Acad.Sci.USSR, 109, 271 (1956).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • I. Lerche
    • 1
  1. 1.Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations