Advertisement

Coadjoint structures, solitions, and integrability

  • Andrei Iacob
  • Shlomo Sternberg
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 120)

Keywords

Vector Field Poisson Bracket Pseudodifferential Operator Poisson Structure Semidirect Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referrences

  1. 1.
    Adler, M., On a trace functional for formal pseudodifferential operators and the symplectic structure for the Korteweg-de Vries type equations, Inventiones math. 50, 219–248 (1979).Google Scholar
  2. 2.
    Faddeev, L., and Zakharov, V.E., Korteweg-de Vries equation as completely integrable Hamiltonian system, Funk.Anal.Priloz., 5 (1971), pp.18–27. (In Russian).Google Scholar
  3. 3.
    Gardner, C.S., Korteweg-de Vries equation and generalizations. IV: The Korteweg-de Vries equation as a Hamiltonian system, J.Math.Phys., 12 (1971) pp. 1548–1551.Google Scholar
  4. 4.
    Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M., Method for solving the Korteweg-de Vries equation, Phys.Rev.Lett., 19 (1967), pp. 1095–1097.Google Scholar
  5. 5.
    Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M., Kortewegde Vries Equation and Generalizations VI, Methods of Exact Solution, Comm.Pure Appl.Math., 27, 97–133 (1974).Google Scholar
  6. 6.
    Gelfand, I.M., and Dikii, L.A., Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Kortewegde Vries equations, Uspekhi Mat.Nauk 30:5 (1975) 67–100.Google Scholar
  7. 7.
    Gelfand, I.M., Dikii, L.A., Fractional Powers of Operators and Hamiltonian, Systems Funkcional'nyi Analiz i ego Prilozenija, 10, No. 4 (1976).Google Scholar
  8. 8.
    Gelfand, I.M., Dikii, L.A., The Resolvent and Hamiltonian Systems, Funkcional'nyi Analiz i ego Prilozenija, 11, 11–27 (1977).Google Scholar
  9. 9.
    Gelfand, I.M., Manin, Yu.I., Shubin, M.A., Poisson Brackets and the Kernel of a Variational Derivative in Formal Variational Calculus. Funkt.Anal.Prilozen., 10, No. 4 (1976).Google Scholar
  10. 10.
    Guillemin, V., Quillen, D., Sternberg, S.: The Integrability of Characteristics, C.P.A.M., 23, 39–77 (1970).Google Scholar
  11. 11.
    Guillemin, V., and Sternberg, S., Geometric Asymptotics, AMS Publ., 1977.Google Scholar
  12. 12.
    Guillemin, V., and Sternberg, S., The Moment Map and Collective Motion, to appear.Google Scholar
  13. 13.
    Hermann, R., Toda lattices, Cosymplectic Manifolds, BAcklund Transformations, Kinks; Part A, 15, Part B, 18, Interdisciplinary Math., Math.Sci.Press.Google Scholar
  14. 14.
    Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian Group Actions and Dynamical Systems of Calogero Type, C.P.A.M. (1978).Google Scholar
  15. 15.
    Kirillov, A., Unitary Representations of Nilpotent Lie Groups, Russ. Math.Surveys 17 (4) 57–101 (1962).Google Scholar
  16. 16.
    Kirillov, A.A.: Elements of the Theory of Representations. Berlin, Heidelberg, New York, Springer-Verlag pp.226–235, 290–292 (1976).Google Scholar
  17. 17.
    Kohn, J.J., and Nirenberg, L., “Pseudodifferential Operators”, Comm. in Pure and Appl.Math., vol.XVIII, 269–305 (1965).Google Scholar
  18. 18.
    Korteweg, D.J., and uDe Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos.Mag., 39 (1895), pp.422–443.Google Scholar
  19. 19.
    Kostant, B., Quantization and unitary representations, Lecture Notes in Math. 170, 87–208, Springer-Verlag (1970)Google Scholar
  20. 20.
    Kostant, B., “The solution to a generalized Toda lattice and representation theory”, to appear.Google Scholar
  21. 21.
    Kuperschmidt, B., and Vinogradov, A.M., Uspehi Mat.Nauk 32 No.4(1977).Google Scholar
  22. 22.
    Lax, P., Periodic solutions of the KdV equations, Comm.Pure Appl.Math. 28 (1975), pp. 141–188.Google Scholar
  23. 23.
    Lax, P., Almost Periodic Solutions of the KdV Equation, SIAM Review, (1976).Google Scholar
  24. 24.
    Lax, P.D., Integrals of Nonlinear Equations and Solitary Waves. Comm.Pure Appl.Math., 21, 467–490 (1968).Google Scholar
  25. 25.
    Lebedev, D.R., and Manin, Yu.I., Gelfand-Dikii Hamiltonian Operator and Coadjoint Representation of Volterra Group, (1978)-to appear.Google Scholar
  26. 26.
    Manin, Yu.I., Algebraic Aspects of Nonlinear Differential Equations (Russian) Itogi Naukii Tekliniki, Sovremennye Problemy Matematiki, vol.11 (1978).Google Scholar
  27. 27.
    Miscenko, A.S., and Fomenko, A.T., Euler Equations of finite-dimensional Lie groups, Izvestija Akad.Nauk S.S.S.R., vol. 42, No. 2 (1978) Mathematics of the U.S.S.R., Izvestija vol. 12, No. 2 (1978).Google Scholar
  28. 28.
    Miura, R.M., The Korteweg-de Vries equation: A survey of results, SIAM Review (1975), pp. 412-458.Google Scholar
  29. 29.
    Miura, R., Gardner, C.S., and Kruskal, M.D., Korteweg-de Vries equation and generalizations, II: Existence of conservation laws and constants of motion. J.Math.Phys., 9 (1968),1204–1209.Google Scholar
  30. 30.
    Souriau, J.M., Structure des systemes dynamiques, Dunod, Paris (1970).Google Scholar
  31. 31.
    Sternberg, S., Some preliminary remarks on the formal variational calculus of Gelfand-Dikii Springer-Lecture Notes in Math., No. 676 (1978) pp. 399–407.Google Scholar
  32. 32.
    Symes, W., A Poisson Structure on Spaces of Symbols, MRC Technical Summary Report # 184, Univ.of Wisconsin-Madison (1978).Google Scholar
  33. 33.
    Symes, W., On systems of Toda type, Technical Summary Report, Univ. of Wisconsin, Madison Mathematics Research Center (1979).Google Scholar
  34. 34.
    Toda, M., Wave Propagation in Harmonic Lattices, J.Phys.Soc.Japan 23, 501–506 (1967).Google Scholar
  35. 35.
    Toda, M., Studies of a non-linear lattice, Physics Reports (sec. C of Physics Letters) 18, 1–125 (1975).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Andrei Iacob
    • 1
  • Shlomo Sternberg
    • 2
  1. 1.Mathematics Department of the Weizmann Institute of ScienceRehovothIsrael
  2. 2.Mathematics Department of the University of Tel AvivIsrael

Personalised recommendations