Geometry of bäcklund transformations

  • F. A. E. Pirani
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 120)


Integrability Condition Parallel Transport Field Quantity Tial Differential Equation BACKLUND Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablowitz, M.J., Kaup, D.W., Newell, A.C. and Segur, H. 1973 Phys.Rev.Lett. 31, 125–127.Google Scholar
  2. 2.
    Crampin, M., Pirani, F.A.E. and Robinson, D.C. 1977 Lett.Math.Phys. 2, 15–19.Google Scholar
  3. 3.
    Godbillon, C. 1968 Géométrie différentielle et mecanique analytique Paris, Hermann.Google Scholar
  4. 4.
    Hermann, R., Interdisciplinary Mathematics Volumes I-, 1974, Brookline MA, Math Sci Press, especially volumes X and XII.Google Scholar
  5. 5.
    Kupersemidt, B., 1979 “Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism”, preprint.Google Scholar
  6. 6.
    Lamb, G.L., 1976 in Bäcklund transformations, (ed. R.M.Miura) 69–79 Berlin, Heidelberg, New York Springer Verlag — Lecture Notes in Mathematics 515, for a lucid elementary account.Google Scholar
  7. 7.
    Pirani, F.A.E. and Robinson, D.C., 1977, C.R.Acad.Sci. Paris 285, 581–583.Google Scholar
  8. 8.
    Pirani, F.A.E., Robinson, D.C., and Shadwick, W.F., 1979, “Local jet bundle formulation of Bäcklund transformations”, in press, supplement to Letters in Math. Phys., No.l.Google Scholar
  9. 9.
    Shadwick, W.F., 1979 Dissertation, University of London.Google Scholar
  10. 10.
    Wahlquist, H.D. and Estabrook, F.B., 1975, J.Math.Phys. 16, 1–7.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • F. A. E. Pirani
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucson

Personalised recommendations