High energy behavior of nonabelian gauge theories

  • J. Bartels
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 118)


Partial Wave Vector Particle Nonabelian Gauge Theory Impact Parameter Space High Energy Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1).
    For reviews of foundation and applications of perturbative QCD see, for example: J. Ellis, Lectures presented at the Les Houches Summer School 1976; H.D. Politzer, Physics Reports 14, 129 (1974)Google Scholar
  2. 2).
    For a discussion of this point I am grateful to Dr. J. Kwieczinsky from Cracov, Poland.Google Scholar
  3. 3).
    A comprehensive review can be found in H.D.I. Abarbanel, J.B. Bronzan, R.L. Sugar, and A.R. White, Physics Reports 21c, 121 (1975)Google Scholar
  4. 4).
    M. Moshe, Physics Reports 37c, 257 (1978) and references thereinGoogle Scholar
  5. 5).
    M. Gell-Mann and M.L. Goldberger, Phys. Rev. Letters 9, 275 (1962); M. Gell-Mann M.L. Goldberger, F.E. Low, and F. Zachariasen, Phys. Letters 4, 265 (1963); M. Gell-Mann, M. Goldberger, F.E. Low, E. Marx and F. Zachariasen, Phys.Rev. 133, B 145 (1964); M. Gell-Mann, M.L. Goldberger, F.E. Low, V. Singh, and F. Zachariasen, Phys. Rev. 133, B 949 (1964)CrossRefGoogle Scholar
  6. 6).
    S. Mandelstam, Phys.Rev. 137, B 949 (1965)CrossRefGoogle Scholar
  7. 7).
    H. Cheng and C.C. Lo, Phys.Lett. 57B, 177 (1975)Google Scholar
  8. 8).
    M.T. Grisaru, Phys. Rev. D 16, 1962 (1977); P.H. Dondi and H.R. Rubinstein, Phys. Rev. D 18, 4819 (1978)Google Scholar
  9. 9).
    K. Bardakci and M.B. Halpern, Phys. Rev. D6, 696 (1972)Google Scholar
  10. 10).
    L.F. Li, Phys. Rev. D9, 1723 (1974)Google Scholar
  11. 11).
    M.T. Grisaru, H.J. Schnitzer, and H.-S. Tsao, Phys. Ref. D8, 4498 (1973)Google Scholar
  12. 12).
    M.T. Grisaru, H.J. Schnitzer, and H.-S. Tsao, Phys. Rev. D9, 2864 (1974)Google Scholar
  13. 13).
    M.T. Grisaru and H.J. Schnitzer, Brandeis Preprint 1979Google Scholar
  14. 14).
    L. Lukaszuk and L. Szymanowski, Preprint of Institute for Nuclear Research, Warsaw, 1979Google Scholar
  15. 15).
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974)CrossRefGoogle Scholar
  16. 16).
    M.C. Bergere and C.de Calan, Saclay preprint DPh-T/79-7Google Scholar
  17. 17).
    H.P. Stapp, in Les Houches Lectures 1975 (North-Holland, Amsterdam) p. 159; A. R. White, ibid. p. 427Google Scholar
  18. 18).
    V.N. Gribov, JETP 26, 414 (1968)Google Scholar
  19. 19).
    R.C. Brower, C.E. Detar and J. Weis, Physics Reports 14c, 257 (1974)CrossRefGoogle Scholar
  20. 20).
    J. Bartels, Phys. Rev. D11, 2977 and 2989 (1975)Google Scholar
  21. 21).
    J. Bartels, Nucl. Phys. B 151, 293 (1979)CrossRefGoogle Scholar
  22. 22).
    L.N. Lipatov, Yadernaya Fiz. 23, 642 (1976)Google Scholar
  23. 23).
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, JETP 71, 840 (1976)Google Scholar
  24. 24).
    Ya.Ya. Balitsky, L.N. Lipatov, and V.S. Fadin in “Materials of the 14 th Winter School of Leningrad Institut of Nuclear Research 1979”, p. 109Google Scholar
  25. 25).
    E.A. Kuraev, L.N. Lipatov, and V.S. Fadin, JETP 72, 377 (1977)Google Scholar
  26. 26).
    J. Bartels, in preparationGoogle Scholar
  27. 27).
    V.N.Gribov in “Materials of the 8 th Winter School of Leningrad Institute of Nuclear Research 1973”, p. 5.Google Scholar
  28. 28).
    S.-J. Chang and S.-K. Ma, Phys. Rev. 188, 2385 (1969)CrossRefGoogle Scholar
  29. 29).
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer, and G.G. Ross, CALT 68-684Google Scholar
  30. 30).
    H.T. Nieh and Y.P. Yao, Phys. Rev. D 13, 1082 (1976); B.M. McCoy and T.T. Wu, Phys. Rev. D 12, 2357 (1976) and Rhys. Rev. D13, 1076 (1976); L. Tyburski, Phys. Rev. D 13, 1107 (1976)CrossRefGoogle Scholar
  31. 31).
    C.Y. Lo and H. Cheng, Phys. Rev. D 13, 1131 (1976) and Phys. Rev. D 15, 2959 (1977)CrossRefGoogle Scholar
  32. 32).
    J.A. Dickinson, Phvs. Rev. D 16, 1863 (1977)CrossRefGoogle Scholar
  33. 33).
    H. Cheng, J. Dickinson, C.Y. Lo, K. Olausen and P.S. Yeung, Phys. Letters 76 B, 129 (1978)Google Scholar
  34. 34).
    H. Cheng, J.A. Dickinson, C.Y. Lo, and K. Olausen, Preprint 1977 and Stony Brook I TP-SB 79-7Google Scholar
  35. 35).
    P. Carruthers and F. Zachariasen, Physics Letters 62 B, 338 (1976)Google Scholar
  36. 36).
    J.B. Bronzan and R.L. Sugar, Phys.Rev. D 17, 585 (1978)CrossRefGoogle Scholar
  37. 37).
    J. Bartels, unpublishedGoogle Scholar
  38. 38).
    V.N. Gribov, L.N. Lipatov, and G.V. Frolov, Yad. Fiz 12, 994 (1971) Sov. Journ. of Nucl. Phys. 12, 543 (71)Google Scholar
  39. 39).
    H. Cheng and T.T. Wu, Phys. Rev. D1, 2775 (1970) and Phys. Lett. 24, 1456 (1970)Google Scholar
  40. 40).
    S.-J. Chang and P.M. Fishbane, Phys.Rev. D 2, 1104 (1970)CrossRefGoogle Scholar
  41. 41).
    For a review of this solution see M. Le Bellac in “19 th International conference on High Energy Physics, Tokyo 1978”, p. 153 and references therein.Google Scholar
  42. 42).
    A.R. White, Ref. TH 2592-CERNGoogle Scholar
  43. 43).
    A.R. White, Ref. TH 2629-CERNGoogle Scholar
  44. 44).
    It should be emphasized that this argument is not strictly based on the reggeon calculus which has been derived in the previous section: there it was characterized as the g → 0 limit of the unitary S-matrix, and this approximation does not include renormalization of the parameters g, M2 etc. In order to use the concept of asymptotic freedom of g2 (k 2) for large values of transverse momentum, as it is done in Ref. 43, it is necessary to go beyond this approximation and include more nonleading terms. Whether this can be done in a consistent way, i.e. without destroying the subtie constraints of unitarity order by order in g2, remains to be seen. It may also be that some of these new contributions are nonperturbative, i.e. they cannot be expanded in powers of g2 at all.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Bartels
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgGermany

Personalised recommendations