Advertisement

Analytic structure of Green's functions in quantum field theory

Quantum Field Theory Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 116)

Abstract

A tentative review of recent results obtained by several authors will be presented. They mainly concern the derivation of analyticity properties for the Green's functions and collision amplitudes of the 2 → 2, 2 → 3, 3 → 3-particle processes from the general principles of Q.F.T. ; emphasis will be laid on the exploitation of asymptotic completeness which generates the monodromic structure of Green's functions. In this connection, the role played by “generalized Bethe-Salpeter kernels” will be described.

Keywords

Analytic Continuation Partial Wave Absorptive Part Retarded Operator Landau Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.F. CHEW, The Analytic S-Matrix, W.A. Benjamin, New York (1966) and references quoted therein.Google Scholar
  2. [2]
    D. IAGOLNITZER, The S-matrix, North Holland, Amsterdam (1978) and references quoted therein.Google Scholar
  3. [3]
    J.P. ECKMANN, H.EPSTEIN, Comm. Math. Phys., 64, 95 (1979).Google Scholar
  4. [4]
    S.M. ROY, G. WANDERS, Physics Letters, 74B, 347 (1978) and Nucl. Phys. B141, 220 (1978).Google Scholar
  5. [5a]
    A.A. LOGUNOV et al., Theor. Math. Phys. 33, 149 (1977).Google Scholar
  6. [5b]
    L.M. MUSAFAROV, Theor. Math. Phys. 38, 36 (1979).Google Scholar
  7. [5c]
    V.P. PAVLOV, Theor. Math. Phys. 37, 154 (1978).Google Scholar
  8. [5d]
    V.P. PAVLOV, Theor. Math. Phys. 35, 3 (1978).Google Scholar
  9. [5e]
    L.M. MUSAFAROV, V.P. PAVLOV, Theor. Math. Phys. 35, 151 (1978).Google Scholar
  10. [5f]
    L.M. MUSAFAROV, Theor. Math. Phys. 35, 291 (1978).Google Scholar
  11. [6]
    H. EPSTEIN, V. GLASER, D. IAGOLNITZER,in preparation.Google Scholar
  12. [7]
    J. BROS in “Analytic Methods in Math. Physics”, p.85, Gordon and Breach, New York (1970).Google Scholar
  13. [8a]
    K. SYMANZIK, J. Math. Phys. 1, 249 (1960).Google Scholar
  14. [8b]
    K. SYMANZIK, in Symposium on Theoretical Physics, 3, New York, Plenum Press (1967).Google Scholar
  15. [9a]
    R.F. STREATER and A.S. WIGHTMAN, “PCT, Spin & Statistics and all that”, Benjamin, New York (1964).Google Scholar
  16. [9b]
    R. JOST, “The general theory of quantized fields”, Ann. Math. Soc. Providence R.I. (1965).Google Scholar
  17. [10]
    K. OSTERWALDER, R. SCHRADER, Comm. Math. Phys. 33, 83 (1973) and 42, 281 (1975).Google Scholar
  18. [11]
    V. GLASER, Comm. Math. Phys. 37, 257 (1974).Google Scholar
  19. [12]
    J. GLIMM, A. JAFFE, T. SPENCER, Ann. Math. 100, 585 (1974).Google Scholar
  20. [13]
    See [3] and references quoted therein.Google Scholar
  21. [14]
    O. STEINMANN, Comm. Math. Phys. 10, 245 (1968).Google Scholar
  22. [15]
    H. EPSTEIN, V. GLASER, R. STORA, “Structural Analysis of Collision Amplitudes”, p.7, North-Holland, Amsterdam (1976) and references quoted therein.Google Scholar
  23. [16]
    K. HEPP in: “Axiomatic Field Theory”, Gordon and Breach, New-York (1966).Google Scholar
  24. [17]
    T. SPENCER and F. ZIRILLI, Comm. Math. Phys. 49, 1 (1975).Google Scholar
  25. [18]
    D. RUELLE, Nuovo Cimento 19, 356 (y) and Thesis, Zurich (1959).Google Scholar
  26. [19]
    See R. JOST [9 b] and references quoted therein.Google Scholar
  27. [20]a)
    J. BROS, H. EPSTEIN, V. GLASER, Nuovo Cim. 31, 1265 (1964)Google Scholar
  28. [20]b)
    J. BROS, H. EPSTEIN, V. GLASER, Comm. Math. Phys. 1, 240 (1965)Google Scholar
  29. [20]c)
    J. BROS, H. EPSTEIN, V. GLASER Helv. Phys. Acta. 45, 149 (1972).Google Scholar
  30. [21]
    A. MARTIN: Nuovo Cimento, 42 A 930 (1966) and 44 1219 (1966).Google Scholar
  31. [22]
    A. MARTIN, “Scattering theory: unitarity analyticity and crossing”, Springer-Verlag (1970).Google Scholar
  32. [23]
    H. EPSTEIN, J. Math. Phys. 1 254 (1960).Google Scholar
  33. [24] a)
    J. BROS, b) D. IAGOLNITZER in Publ. R.I.M.S., Kyoto Univ. 12 Suppl. (1976).Google Scholar
  34. [25]
    M. SATO, T. KAWAI, M. KASHIWARA, Lect. Notes in Math., Springer Verlag (1972).Google Scholar
  35. [26]
    A.S.WIGHTMAN, in “Relations de dispersion ...” Hermann, Paris (1960), ref.therein.Google Scholar
  36. [27]
    J. BROS, V. GLASER, l'enveloppe d'holomorphie de l'union de deux polycercles. (1961)Google Scholar
  37. [28]
    M.C. POLIVANOV, “Math.Pb. in Math.Phys.”,375 Lect. Notes in Phys.,Springer (197).Google Scholar
  38. [29]
    N.N. BOGOLIUBOV, D.V. SHIRKOV, “Intr, to the theory, of Quantized Fields”, MoscowGoogle Scholar
  39. [30a]
    J. BROS, M. LASSALLE, Comm. Math. Phys. 43, 279 (1975). (1957).Google Scholar
  40. [30b]
    J. BROS, M. LASSALLE, Comm. Math. Phys. 54, 33 (1977).Google Scholar
  41. [31]
    W. ZIMMERMANN, Nuovo Cimento, 21 249 (1961)Google Scholar
  42. [32]
    A. MARTIN, in “Problems of Theoretical Physics”, Moscow, Bauka (1969).Google Scholar
  43. [33]
    J. BROS and D. PESENTI, “Fredholm theory in complex manifolds” to be published in “Journal de Math. Pures et Appliquées”. (preprint Orsay 1979).Google Scholar
  44. [34]
    J. BROS, Cours de Sème cycle, Lausanne, Mai 1979.Google Scholar
  45. [35]
    R. ASCOLI, Nuovo Cimento, 18 754 (1960)Google Scholar
  46. [36]
    J. BROS, M. LASSALLE, “Structural Analysis of Collision Amplitudes”, p.97, North-Holland, Amsterdam (1976).Google Scholar
  47. [37]
    A. KATZ, Thèse de 3ème cycle Paris, Juin 1979.Google Scholar
  48. [38]
    M. LASSALLE, Comm. Math. Phys. 34, 185 (1974).Google Scholar
  49. [39]
    J. BROS, M. GRAMMATICOU, “Renormalized g-convolution I”, Saclay (1978) to be published in Comm. Math. PhysGoogle Scholar
  50. [39]a
    M. GRAMMATICOU, “Renormalized convolution II”, Ecole Polytechnique,Paris 1979.Google Scholar
  51. [40]
    W. ZIMMERMANN, Comm. Math. Phy 15, 208 (1969).Google Scholar
  52. [41]
    S. WEINBERG, Phys. Rev. 118 (1960).Google Scholar
  53. [42]
    J. BROS and D. PESENTI, in preparation.Google Scholar
  54. [43]
    G. SOMMER, in preparation.Google Scholar
  55. [44]
    R. OMNES, in “Relations de dispersion ...” Hermann, Paris (1960), ref. therein.Google Scholar
  56. [45]
    F. DUNLOP, M. COMBESCURE, n-particle irreducible functions in euclidean O.F.T. Preprint IHES (1978), and H. KOCH, Thesis, Genève (1979).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Bros
    • 1
  1. 1.DPhT, CEN SaclayGif-sur-YvetteFrance

Personalised recommendations