Holonomic Quantum Fields — The unanticipated link between deformation theory of differential equations and quantum fields —

  • Michio Jimbo
  • Tetsuji Miwa
  • Mikio Sato
  • Yasuko Môri
Statistical Mechanics Session Organized by E. Brezin
Part of the Lecture Notes in Physics book series (LNP, volume 116)


Deformation Theory Monodromy Matrix Deformation Equation Irregular Singularity Monodromy Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sato, T. Miwa and M. Jimbo, a series of papers entitled “Holonomic quantum fields.” I: Publ. RIMS, Kyoto Univ. 14 (1978) 223, II: ibid. 15 (1979) 201, III: ibid., to appear in 15 (1979), IV: RIMS preprint 263 (1978), V: ibid. 267 (1978), 1V supplement: ibid. 304 (1979). These papers are referred to in the text as [H] I, etc.Google Scholar
  2. 2.
    , a series of short notes entitled “Studies on holonomic quantum fields.” Proc. Japan Acad. 53A (1977) 6(I), 147(II), 153(III), 183(IV), 219(V), 54A (1978) l(VI), 3E(VII), 221(VIII), 263(1X), 309(X), 55A (1979) 6(XI), 73(XIl), 115 (XIII), 157 (XIV), 267(XV), 317(XVI). Some of them are with different authors (IX: M. Jimbo, XIII, XIV: M. Jimbo and T. Miwa, XV: M. Jimbo, T. Miwa and P4. Sato, XVI: M. Jimbo, T. Miwa, Y. Môri and M. Sato). These papers are referred to in the text as [S] I, etc.Google Scholar
  3. 3.
    M. Jimbo, T. Miwa, Y. Môri and M. Sato, Density matrix of impenetrable bose gas and the fifth Painleve transcendent, RIMS preprint, Kyoto Univ. 303 (1979).Google Scholar
  4. 4.
    M. Jimbo, T. Miwa and M. Sato, Kakuyĝô Kenkyu, Inst. Plasma Phys. Nagoya Univ., 40 Suppl. (1978) 45.Google Scholar
  5. 4a.
    4.— Proc. of the “International Colloquium on Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory” Les Houches, France (1979), to appear.Google Scholar
  6. 5.
    E. Barouch, B. M. McCoy and T. T. Wu, Phys. Rev. Lett. 31 (1973) 1409.Google Scholar
  7. 5.a
    T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Phys Rev. B13 (1976) 316.Google Scholar
  8. 6.
    B. M. McCoy, C.A. Tracy and T. T. Wu, J. Math. Phys. 18 (1977) 1058.Google Scholar
  9. 7.
    M. Girardeau, J. Math. Phys. 1 (1960) 516.Google Scholar
  10. 8.
    L. Schlesinger, J. Reine u. Angew. Math. 141 (1912) 96.Google Scholar
  11. 9.
    J. Malmquist, Arkiv Math. Astro. Phys. 17, No.18 (1922) 1.Google Scholar
  12. 10.
    K. Okamoto, Polynomial Hamiltonians associated to the Painleve equations, preprint Tokyo Univ. (1979).Google Scholar
  13. 11.
    R. Fuchs, Math. Ann. 63 (1907) 301.Google Scholar
  14. 12.
    R. Garnier, Ann. Ecol. Norm. Sup. 29 (1912) 1.Google Scholar
  15. 13.
    M. J. Ablowitz, A. Ramani and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type I, II, preprints (1979).Google Scholar
  16. 14.
    H. Flaschka and A.C. Newell, Monodromy and spectrum preserving deformations I, preprint (1979).Google Scholar
  17. 15.
    K. Ueno, Monodromy preserving deformations and its application to soliton theory, RIMS preprint 302, Kyoto Univ. (1979).Google Scholar
  18. 16.
    L. D. Faddeev, Modèles complètement intégrables de la théorie quantique des champs, preprint (French translation by Cambefort in Dijion) (1979).Google Scholar
  19. 17.
    J. Honerkamp, P. Weber and A. Wiesler, Nucl. Phys. B152 (1979) 266.Google Scholar
  20. 18.
    H. B. Thacker and D. Wilkinson, Phys. Rev. D19 (1979) 3660.Google Scholar
  21. 19.
    G. 't Hooft, Nucl. Phys. B138 (1978) 1.Google Scholar
  22. 20.
    J. Hadamard, Oeuvre t. II.Google Scholar
  23. 20a.
    P. Lèvy, Problèmes concrets d'analyse fonctionelle, Gauthier-Villars, Paris (1951).Google Scholar
  24. 21.
    L. Onsager, Phys. Rev. 65 (1944) 117.Google Scholar
  25. 22.
    C. N. Yang, Phys. Rev. 85 (1952) 808.Google Scholar
  26. 23.
    B. M. McCoy and T. T. Wu, The two dimensional Ising model, Harvard University Press, Cambridge, Mass. (1973).Google Scholar
  27. 24.
    B. M. McCoy, C. A. Tracy and T. T. Wu, Phys. Rev. Lett. 38 (1977) 793.Google Scholar
  28. 25.
    R. Z. Bariev, Phys. Lett. 55A (1976) 456.Google Scholar
  29. 25a.
    —, Phys. Lett. 64A (1977) 169.Google Scholar
  30. 26.
    M. Sato, T. Miwa and M. Jimbo, Field theory of the two dimensional Ising model in the scaling limit, RIMS preprint, Kyoto Univ. 207 (1976).Google Scholar
  31. 27.
    D. B. Abraham, Comm. Math. Phys. 59 (1978) 17.Google Scholar
  32. 28.
    G. E. Latta, J. Rational Mech. Anal. 5 (1956) 821.Google Scholar
  33. 29.
    J. M. Myers, J. Math. Phys. 6 (1965) 1839.Google Scholar
  34. 30.
    B. Kaufman, Phys. Rev. 76 (1949) 1232.Google Scholar
  35. 31.
    T. D. Schultz, D. C. Mattis and E. H. Lieb, Rev. Mod. Phys. 36 (1964) 856.Google Scholar
  36. 32.
    L. P. Kadanoff and H. Ceva, Phys. Rev. B3 (1971) 3918.Google Scholar
  37. 33.
    B. Schroer, T. T. Truong and P. Weisz, Ann. Phys. 102 (1976) 156.Google Scholar
  38. 34.
    B. Riemann, Werke, p.379.Google Scholar
  39. 35.
    P. Painlevé, Oeuvre t. III, p.187.Google Scholar
  40. 36.
    K. Ueno, Monodromy preserving deformation of linear differential equations with irregular singular points, RIMS preprint, Kyoto Univ. 301 (1979).Google Scholar
  41. 37.
    G. D. Birkhoff, Trans. Amer. Math. Soc. 10 (1909) 436.Google Scholar
  42. 38.
    T. D. Schultz, J. Math. Phys. 4 (1963) 666.Google Scholar
  43. 39.
    A. Lenard, J. Math. Phys. 7 (1966) 1268.Google Scholar
  44. 40.
    H. G. Vaidya and C. A. Tracy, Phys. Lett. 68A (1978) 378.Google Scholar
  45. 40a.
    , Phys. Rev. Lett. 42 (1979) 3.Google Scholar
  46. 41.
    M. L. Mehta, Random Matrices, Academic Press, New York (1967).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Michio Jimbo
    • 1
  • Tetsuji Miwa
    • 1
  • Mikio Sato
    • 1
  • Yasuko Môri
    • 2
  1. 1.RIMSKyoto UniversityKyoto
  2. 2.Department of MathematicsRyŷkyû UniversityOkinawaJapan

Personalised recommendations