Time dependent phenomena in statistical mechanics

  • Oscar E. LanfordIII
Statistical Mechanics Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 116)


Solution Curve Phase Point Newtonian Equation BBGKY Hierarchy Local Existence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander,R.K.: Time evolution for infinitely many hard spheres. Commun. math. Phys. 49,217–232 (1976)Google Scholar
  2. 2.
    van Beijeren,H.,Lanford,O.E.,Lebowitz,J.L.,and Spohn,H.:Equilibrium time correlation functions in the low density limit. Preprint(1979)Google Scholar
  3. 3.
    Braun,W. and Hepp,K.: The Vlasov dynamics in the 1/N limit of interacting classical particles. Commun. math. Phys. 56, 101–113 (1977)Google Scholar
  4. 4.
    Dobrushin,R.L. and Tirozzi,B.: The central limit theorem and the problem of equivalence of ensembles. Commun. math. Phys. 54, 173–192 (1977)Google Scholar
  5. 5.
    Fritz,J. and Dobrushin,R.L.: Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Commun. math. Phys. 57, 67–81 (1977)Google Scholar
  6. 6.
    Lanford,O.E.: Time evolution of large classical systems, in: Dynamical Systems: Theory and Applications, ed. J.Moser. Springer Lecture Notes in Physics 38, 1–111(1975)Google Scholar
  7. 7.
    Marchioro,C., Pellegrinotti,A. and Presutti,E.: Existence of time evolution for v-dimensional statistical mechanics. Commun. math. Phys. 40, 175–185 (1975)Google Scholar
  8. 8.
    Sinai,Ya.G.: Construction of the dynamics in one-dimensional systems of statistical mechanics. Teoret. Mat. Fiz. 11, 248–258 (1972) English translation: Theoret. and Math. Phys. 12, 487–494(1973)Google Scholar
  9. 9.
    Sinai,Ya.G.: Construction of cluster dynamics for dynamical systems of statistical mechanics. Vest. Moscow Univ.,no 1,152–158(1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Oscar E. LanfordIII
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations