Number of eigenvalues of many-body Hamiltonians and Efimov's effect

  • I. M. Sigal
Schrödiger Operators Session Organized by B. Simon
Part of the Lecture Notes in Physics book series (LNP, volume 116)


Faddeev Equation Virtual Particle Bound State Energy Quasibound State Dinger Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Amado and J. Noble. Phys. Lett. 35B (1971), 25; Phys. Rev. D5 (1972), 1992–2002.Google Scholar
  2. 2.
    V. Efimov. Phys. Lett. 33D (1970), 563; Sov. J. Nucl. Phys. 12 (1971), 589.Google Scholar
  3. 3.
    A. C. Fonseca, E. F. Redish, and P. E. Stanley. Efimov Effect in an Analytically Solvable Model. Univ. of Maryland (1979)Google Scholar
  4. 4.
    M. Klaus and B. Simon. Ann. Inst. H. Poincaré, to appear.Google Scholar
  5. 5.
    M. Klaus and B. Simon. In preparation.Google Scholar
  6. 6.
    Yu. N. Ovchinnikov and I. M. Sigal. Ann. Phys., in press.Google Scholar
  7. 7.
    I. M. Sigal. Unpublished.Google Scholar
  8. 8.
    B. Simon. J. Funct. Annal., to appear.Google Scholar
  9. 9.
    D. R. Yafaev. Math. Sb. 94 (1974), 567–593.Google Scholar
  10. 10.
    A. Jensen and T. Kato, Preprint, 1979, Berkeley.Google Scholar
  11. 11.
    M. Loss and I. M. Sigal. In preparation.Google Scholar
  12. 12.
    V. De Alfaro and T. Regge. Potential Scattering, North-Holland (1965).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • I. M. Sigal
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrinceton

Personalised recommendations