Recent developments in quantum scattering theory

  • J. M. Combes
Schrödinger Operators Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 116)


Besov Space Invariance Principle Scattering Theory Potential Scattering Short Range Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. GORDON, über den stoss zweier punktladungen nach der Wellenmechanik Z. Phys. 48, 180 (1928).Google Scholar
  2. [2]
    S. AGMON, Lecture Notes, Salt Lake City (1978).Google Scholar
  3. [3]
    V. ENSS, Asymptotic completeness for quantum mechanical potential scattering, Commun.Math.Phys. 61, 285 (1979).Google Scholar
  4. [4]
    D. RUELLE, A remark on bound states in potential scattering theory, Nuovo Cimento A 61, 655 (1969).Google Scholar
  5. [5]
    S. AGNON, Spectral properties of Schrödinger operators and Scattering Theory, Ann. Scuola Norm. Sup. Pisa, II, 2, 151 (1975).Google Scholar
  6. [6]
    A. JENSEN and T. KATO, Spectral properties of Schrödinger operators and time decay, Duke Math. J. 46 (1979).Google Scholar
  7. [7]
    J. RAUCH, Local decay of scattering solutions for Schrödinger equation, Commun.Math.Phys. 61, 149 (1978).Google Scholar
  8. [8]
    L. HÖRMANDER, The existence of wave-operators in scattering theory, Math. Z. 146, 169 (1976).Google Scholar
  9. [9]
    E. MOURRE, Link between the geometrical and the spectral transformation approaches in scattering theory, Commun.Math.Phys. 68, 91 (1579).Google Scholar
  10. [10]
    T. KATO, Two-space scattering theory with applications to many-body problems, J. Fac. Sci. Univ. Tokyo, 24, 503 (1977).Google Scholar
  11. [11]
    M. SCHECTER, Completeness of wave-operators in two Hilbert spaces, Ann.Inst. H. Poincaré, XXX, 109 (1979).Google Scholar
  12. [12]
    T. KATO, Some recent results in scattering theory, Univ. of California Preprint, Berkeley (1979).Google Scholar
  13. [13]
    P. COTTA-RAMUSINO, W. KRÜGER and R. SCHRADER, Quantum scattering by external metrics and Yang-Mills potentials, to appear in Ann. Inst. H. Poincaré.Google Scholar
  14. [14]
    R. SCHRÄDER, High Energy behaviour for non-relativistic scattering by stationary external metrics and Yang-Mills potentials, CERN preprint TH 2698 (1979).Google Scholar
  15. [15]
    C. CHANDLER, A.G. GIBSON, N-body quantum scattering theory in two Hilbert spaces, Journ.Math.Phys. 19, 1610 (1978).Google Scholar
  16. [16]
    M. SCHECTER, A new criterion for scattering theory, Duke Math. J., 44, 863 (1977).Google Scholar
  17. [17]
    B. SIMON, Scattering theory and quadratic forms: on a theorem of Schecter, Commun.Math.Phys. 53, 151 (1977).Google Scholar
  18. [18]
    T. KATO, On the Cook-Kuroda criterion in scattering theory, Commun.Math.Phys. 67, 85 (1979).Google Scholar
  19. [19]
    J. KUPSH, W. SANDHAS, Möller operators for scattering on singular potentials, Commun.Math.Phys. 2, 147 (1966).Google Scholar
  20. [20]
    M. REED, B. SIMON, Scattering Theory (Methods of Modern Mathematical Physics, vol. III), Academic Press (1979).Google Scholar
  21. [21]
    L. HÖRMANDER, The existence of wave-operators in scattering theory, Math. Z. 146, 69 (1976).Google Scholar
  22. [22]
    T. KATO, On finite dimensional perturbations of self-adjoint operators, J.Math.Soc. Japan 9, 239 (1957).Google Scholar
  23. [23]
    D.B. PEARSON, A generalisation of Birman's trace theorem, J. Funct.Anal. 28, 182 (1978).Google Scholar
  24. [24]
    J.D. DOLLARD, Interpretation of Kato's invariance principle in scattering theory, J. Math. Phys. 17, 46 (1976).Google Scholar
  25. [25]
    P. LAX and R. PHILLIPS, Scattering Theory, Academic Press, New York, 1967.Google Scholar
  26. [26]
    P. DEIFT and B. SIMON, On the decoupling of finite singularities from the question of asymptotic completeness, J. Funct. Anal. 23, 218 (1976).Google Scholar
  27. [27]
    A. JENSEN and T. KATO, Asymptotic behaviour of the scattering phase for exterior domains, Commun. in P.D.E 3, 12, 1105 (1978).Google Scholar
  28. [28]
    M. COMBESCURE and J. GINIBRE, Scattering and local absorption for the Schródinger operator, J. Funct. Anal. 29, 54 (1978).Google Scholar
  29. [29]
    S.T. KURODA, Perturbations of continuous spectra by unbounded operators, I,II. J. Math. Soc. Japan, 11, 247 (1959).Google Scholar
  30. [30]
    M. G. KREIN, On the trace formula in the theory of perturbation, Mat. Sbornik 33 (75), 597 (1953).Google Scholar
  31. [31]
    G. DETSH, Introduction of the theory and applications of the Laplace transform, Springer, Berlin (1974).Google Scholar
  32. [32]
    H. McKEAN and I.M. SINGER, Curvature and the eigenvalues of the Laplacian, J. Diff. Geometry, 1, 43 (1967).Google Scholar
  33. [33]
    P.B. GILKEY, Recursion relations and the asymptotic behaviour of the eigen-values of the Laplacian, Princeton University Preprint (1977).Google Scholar
  34. [34]
    V.S. BUSLAEV, Dokl.Akad. Nauk SSSR, 197, 999 (1971); Soviet Math. Dokl., 12, 999 (1971).Google Scholar
  35. [35]
    A. MAJDA and J. RALSTON, An analogue of Weyl's theorem for unbounded domains, I, II. Duke Math. Journal 45, 183 and 45, 513 (1978). An Epilogue, III, University of California Preprint (1979).Google Scholar
  36. [36]
    T. KATO, Monotonicity theorems in scattering theory, Hadronic Journal 1, 134 (1978).Google Scholar
  37. [37]
    B. SIMON, Kato's inequality and the domination of semi-groups, J. Funct. Anal., 32, 97 (1979).Google Scholar
  38. [38]
    H. HESS, R. SCHRÄDER and D. A. UHLENBROCK, Duke Math. Jour., 44, 893 (1977).Google Scholar
  39. [39]
    H. HOGREVE, R. SCHRÄDER and R. SEILER, Nuclear Phys. B142, 525 (1978).Google Scholar
  40. [40]
    B. SIMON, Phase space analysis of simple scattering systems. Extensions of some work of Enss. To appear in Duke Math. Jour.Google Scholar
  41. [41]
    S. AGMON and L. HÖRMANDER, Asymptotic properties of solutions of differential equations with simple characteristics, Journal d'Analyse, 1976.Google Scholar
  42. [42]
    T. GREEN and O. LANFORD III, Rigorous derivation of the phase shift formula, J. Math. Phys. 1, 139 (1960).Google Scholar
  43. [43]
    T. IKEBE, Eigenfunction expansions associated with the Schrödinger operators and their application to scattering theory, Arch.Rat. Mech. Anal., 5, 1 (1960).Google Scholar
  44. [44]
    M. SCHECTER, Completeness of wave-operators in two Hilbert spaces, Ann.Inst. H. Poincaré, XXX 2, 109 (1979).Google Scholar
  45. [45]
    I. SIGAL, Scattering theory for many-particle systems I, II, Preprint ETH ZürichGoogle Scholar
  46. [46]
    T. KATO and S.T. KURODA, The abstract theory of scattering, Rocky Mtn.J.Math. 1, 127 (1971).Google Scholar
  47. [47]
    D.R. YAFAEV, On the break-down of completeness in potential scattering, Commun.Math.Phys. 65, 167 (1979).Google Scholar
  48. [48]
    K. YAJIMA, An abstract stationary approach to 3-body scattering, J.Fac.Sc. Univ. of Tokyo, Sec.1A, 25, 109 (1978).Google Scholar
  49. [49]
    J.M. COMBES, Scattering theory in quantum mechanics and asymptotic completeness, Proceedings of the AMP Conference, Rome 1977, Springer Lecture Notes.Google Scholar
  50. [50]
    K. CHADAN and A. MARTIN, Boundedness of total cross-section in potential scattering, Poster session of this Conference.Google Scholar
  51. [51]
    P. DEIFT and B. SIMON, A time-dependent approach to the completeness of multiparticle quantum systems, Com.Pure Appl.Math. 30, 573 (1977).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. M. Combes
    • 1
  1. 1.Département de MathématiquesUniversité de Toulon and Centre de Physique Théorique II, CNRSMarseille

Personalised recommendations