Advertisement

Examples of X-ray topographic results

  • A. Mathiot
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 112)

Abstract

This brief review of X ray topography applications to materials science was not complete at all. But the aim was, above all, starting from various examples, to show the most important fields where it can help. As it is mostly sensitive to elastic fields, this technique has first been used as a characterization tool for the defects' study. But the current developement of simulation procedures allows deeper studies whenever elastic models can be built. Furthermore the recent appearance of intense, tunable polarized sources allows to foresee a lot of new applications both for the investigation of diffraction processes in crystals and for the study of dynamic phenomena.

Keywords

Domain Wall Synchrotron Radiation Topographic Image Elastic Field Alternative Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    LANG A.R. (1958) J. Appl. Phys. 29, 597Google Scholar
  2. (2).
    LANG A.R. Diffraction and Imaging Techniques in Material Science. Amelincks, Gevers, van Landuyt eds. North-Holland(1978)Google Scholar
  3. (3).
    AUTHIER A. X Ray Optics. Queisser ed. Topics in Applied Physics Vol. 22, Springer(1977)Google Scholar
  4. (4).
    TANNER B.K. X Ray Diffraction Topography, Int. Ser. Sc. Sol. St. Vol.10, Pergamon (19 76 )Google Scholar
  5. (5).
    MALGRANGE C. This bookGoogle Scholar
  6. (6).
    COISSON, MILTAT: this bookGoogle Scholar
  7. (7).
    LANG A.R. (1974) J. Cryst. Growth 24/25, 108Google Scholar
  8. (8).
    SAUVAGE M. and AUTHIER A. (1965) Bull. Soc. Fr. Min. Crist. 88, 379Google Scholar
  9. (9).
    ZARKA A. (1974) J. Appl. Cryst. 7, 453Google Scholar
  10. (10).
    SUZUKI S. and LANG A.R.(1976) Diamond Research 1976 p.39Google Scholar
  11. (11).
    AUTHIER A. (1972) J. Cryst. Growth 13/14, 34Google Scholar
  12. (12).
    IZRAEL A., PETROFF J.F., AUTHIER A. and MALEK Z. (1972) J. Cryst. Growth 16, 131Google Scholar
  13. (13).
    GITS-LEON S., LEFAUCHEUX F. and ROBERT M.C. (1978) J. Cryst. Growth 44, 345Google Scholar
  14. (14).
    GASTALDI J. and JOURDAN C. (1978) Phys. Stat. Sol.(a) 49, 529Google Scholar
  15. (15).
    BACMANN J.J., MATHIOT A., SILVESTRE G. and DE TOURNEMINE R.(1977) IVth Eur. Cryst. Meet., Oxford p.646Google Scholar
  16. (16).
    MATHIOT A. and GAY M.O. (to be published)Google Scholar
  17. (17).
    CHIKAZUMII S. Physics of Magnetism, Wiley(1964)Google Scholar
  18. (18).
    POLCAROVA M. and LANG A.R. (1962) Appl. Phys. Lett. 1. 13Google Scholar
  19. (19).
    MATHIOT A. and PETROFF J.F. (1976) J. Appl. Phys. 47,1639Google Scholar
  20. (20).
    NEEL L., PAUTHENET R. and DREYFUS B. (1964) Prog. Low Temp. Phys. 4, 344Google Scholar
  21. (21).
    PETROFF J.F. and MATHIOT A. (1974) Mat. Res. Bull. 9, 319Google Scholar
  22. (22).
    MILTAT J. private communicationGoogle Scholar
  23. (23).
    ROLLAND G. These 3eme cycle, Grenoble(1973 )Google Scholar
  24. (24).
    BELOUET C., DUNIA E. and PETROFF J.F. (1974) J. Cryst. Growth 23, 243Google Scholar
  25. (25).
    KATO N. and PATEL J.R. (1973) J. Appl. Phys. 44, 965Google Scholar
  26. (25a).
    PATEL J.R. and KATO N. ibid ( p.971Google Scholar
  27. (26).
    MILTAT J.E. and KLEMAN M. (1973) Phil. Mag. 28, 1015Google Scholar
  28. (27).
    KRONER E.(1958) Kontinuum Theorie der Versetzungen und Eigenspannungen. SpringerGoogle Scholar
  29. (28).
    GEORGE A. These d'Etat Nancy(1977)Google Scholar
  30. (29).
    HAZZELDINE P.M. KARNTHALER H.P. and WINTNER E. (1975) Phil. Mag. 32,81Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • A. Mathiot
    • 1
  1. 1.Departement de MetallurgieCentre d'Etudes NucleairesGrenoble CedexFrance

Personalised recommendations