Interpretation of X-Ray topography

  • Y. Epelboin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 112)


X-Ray topography is a powerfull method to study isolated defects in macroscopic crystals. The contrast of the most common defects is rather well-known and their study may be done without a good knowledge of the dynamical theory. Very simples rules permit to everybody the use of this method. An accurate model for the deformation due to a defect may be verified by comparison of experiments and simulations. The difficulty remains the choice of this model but modelization assisted by computer will become more and more an ordinary tool in the interpretation of X-Ray topographs.


Burger Vector Dynamical Theory Direct Image Photographic Film Section Topograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AUTHIER A. (1967), Adv. in X-Ray Analysis, 10, 9.Google Scholar
  2. AUTHIER A. (1968), Phys. Stat. Sol., 27, 77.Google Scholar
  3. AUTHIER A., MALGRANGE C., TOURNARIE M. (1968), Acta Cryst., A24, 126.Google Scholar
  4. AUTHIER A., PATEL J.R. (1975), Phys. Stat. Sol. (a), 27, 213.Google Scholar
  5. BALIBAR F., AUTHIER A. (1967), Phys. Stat. Sol., 21, 413.Google Scholar
  6. BALIBAR F., EPELBOIN Y., MALGRANGE C. (1975), Acta Cryst., A31, 836.Google Scholar
  7. BARNS R.L., FREELAND P.E., KOLB E.D., LAUDISE R.A., PATEL J.R. (1978), Acta Cryst. Growth, 43, 676.Google Scholar
  8. CAPELLE B., EPELBOIN Y., MALGRANGE C. (1979), to be published.Google Scholar
  9. DUNIA E., MALGRANGE C., PETROFF J.F. (1979), Phil. Mag., to be published.Google Scholar
  10. EPELBOIN Y. (1974), J. Appl. Cryst., 7, 372.Google Scholar
  11. EPELBOIN Y. (1977), Acta Cryst., A33, 758.Google Scholar
  12. EPELBOIN Y., JEANNE-MICHAUD A., ZARKA A. (1979), J. Appl. Cryst.,12,201Google Scholar
  13. EPELBOIN Y., LIFCHITZ A. (1974), J. Appl. Cryst., 7, 377.Google Scholar
  14. EPELBOIN Y., PATEL J.R. (1979), to be published.Google Scholar
  15. EPELBOIN Y., RIBET M. (1974), Phys. Stat. Sol.(a), 25, 507.Google Scholar
  16. EPELBOIN Y., RIGLET P. (1979), Phys. Stat. Sol.(a), to be published.Google Scholar
  17. HART M. (1963), PhD. Thesis, University of Bristol.Google Scholar
  18. HARUTA K. (1965), J. Appl. Phys., 36, 1789.Google Scholar
  19. G'SELL C., EPELBOIN Y. (1979), J. Appl. Cryst., 12, 110.Google Scholar
  20. HEAD A.K. (1967), Aust. J. Phys., 20, 557.Google Scholar
  21. KATO N. (1961), Acta Cryst., 14, 526.Google Scholar
  22. KATO N. (1963), J. Phys. Soc. Japan, 18, 12.Google Scholar
  23. KATO N., PATEL J.R. (1968), Appl. Phys. Letters, 13, 42.Google Scholar
  24. LANG A.R. (1959), Acta Cryst., 12, 249.Google Scholar
  25. LANG A.R. (1965), Z. Naturfor., 20a, 636.Google Scholar
  26. MILTAT J., BOWEN D.K. (1975), J. Appl. Cryst., 8, 657.Google Scholar
  27. MORIMOTO H., UYEDA R. (1963), Acta Cryst., 16, 1107.Google Scholar
  28. NOURTIER C., TAUPIN D., KLEMAN M., LABRUNE M., MILTAT J. (1977), J. Aonl. Cryst., 10, 328.Google Scholar
  29. PATEL J.R., AUTHIER A. (1975), J. Appl. Phys., 46, 118.Google Scholar
  30. PENNING P., POLDER D. (1961), Philips RES. Rep. 16, 419.Google Scholar
  31. PETRASHEN I.V. (1976), Fiz. Tverda Tela, 18, 3729.Google Scholar
  32. PETRASHEN P.V., CHUKOVSKII F.N. (1978), Fiz.Tverda Tela, 20, 1104.Google Scholar
  33. TAKAGI S. (1962), Acta Cryst., 15, 1311.Google Scholar
  34. TANNER B.K. (1976), X-Ray diffraction Topography, Pergamon Press N.Y.Google Scholar
  35. TAUPIN D. (1964), Bull. Soc. Fr. Min. Crist., 87, 469.Google Scholar
  36. WONSIEWICZ B.C., PATEL J.R. (1975), J. Appl. Cryst., 8, 67.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Y. Epelboin
    • 1
  1. 1.Laboratoire de Minéralogie-Cristallographie, associé au CNRSUniversité P. et M. CurieParis Cedex 05France

Personalised recommendations