Advertisement

Computation of Kármán swirling flows

  • M. Lentini
  • H. B. Keller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 76)

Keywords

Limit Point Invariant Subspace Nonlinear Eigenvalue Problem Rossby Number Nonlinear Difference Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Dijkstra and P. J. Zandbergen: Non Unique Solutions of the Navier-Stokes Equations for the Karman Swirling Flow. Technische Hogeschool Twente, Report No. 155, November 1976.Google Scholar
  2. [2]
    T. von Karman: Über laminare und turbulente Reibung; ZAMM 1 (1921) 232–252.Google Scholar
  3. [3]
    H. B. Keller: Numerical Solution of Two Point Boundary Value Problems. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, Pa. 1976 (61 pages).Google Scholar
  4. [4]
    H. B. Keller: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, in Applications of Bifurcation Theory; Academic Press, New York, (1977) 359–384.Google Scholar
  5. [5]
    M. Lentini: Boundary value problems over semi-infinite intervals; Ph.D. Thesis, California Institute of Technology, May 1978.Google Scholar
  6. [6]
    M. Lentini and H. B. Keller: The von Karman swirling flows, submitted to J. Fluid Mech.Google Scholar
  7. [7]
    M. Lentini and V. Pereyra: An adaptive Finite Difference Solver for Nonlinear Two Point Boundary Value Problems with Mild Boundary Layers. SINUM 13 (1).Google Scholar
  8. [8]
    A. B. White: Multiple solutions for rotationally symmetric incompressible, viscous flow; Ctr. for Num. Anal., University of Texas, Austin; CNA-132, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Lentini
    • 1
  • H. B. Keller
    • 1
  1. 1.Applied Mathematics California Institute of TechnologyUSA

Personalised recommendations