Advertisement

Pasva3: An adaptive finite difference fortran program for first order nonlinear, ordinary boundary problems

  • V. Pereyra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 76)

Keywords

Global Error Newton Iteration Nonlinear Eigenvalue Problem Local Truncation Error Parameter Identification Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burchard, H.G. [1974]. Splines (with optimal knots) are better. J. App. Anal. 3, 309–319.Google Scholar
  2. 2.
    Concus, P. and V. Pereyra [1978]. A software package for meniscus calculations. In preparation.Google Scholar
  3. 3.
    DD04AD [1978]. Program documentation. Harwell, AERE, Oxfordshire England.Google Scholar
  4. 4.
    Deuflhard, P. [1976]. A stepsize control for continuation methods with special application to multiple shooting techniques. Tum. Math. 7627, Techn. Univ. München.Google Scholar
  5. 5.
    Fox, L. [1957]. The Numerical Solution of Two Point Boundary Problems in Ordinary Differential Equations. Clarendon Press, Oxford.Google Scholar
  6. 6.
    Keller, H.B. [1968]. Numerical Methods for Two-Point Boundary Value Problems, Blaisdell, London.Google Scholar
  7. 7.
    Keller, H.B. [1969]. Accurate difference methods for linear ordinary differential systems subject to linear constraints. SIAM J. Numer. Anal. 6, 8–30.Google Scholar
  8. 8.
    Keller, H.B. [1974]. Accurate difference methods for nonlinear two point boundary value problems, SIAM J. Numer. Anal. 11, 305–320.Google Scholar
  9. 9.
    Keller, H.B. [1976]. Numerical Solution of Two Point Boundary Value Problems. Reg. Conf. Series in App. Math. No. 24. 61 p. SIAM, Philadelphia, Penn. 19103.Google Scholar
  10. 10.
    Keller, H.B. [1977a]. Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory (Ed. P. Rabinowitz), p. 359–384. Academic Press, New York.Google Scholar
  11. 11.
    Keller, H.B. [1977b]. Constructive methods for bifurcation and nonlinear eigenvalue problems. In Proc. 3rd Int. Symp. on Comp. Methods in Applied Sc. and Engineering. Versailles, France.Google Scholar
  12. 12.
    Keller, H.B. and V. Pereyra [1978]. Difference methods and deferred corrections for ordinary boundary value problems. To appear in SIAM J. Numer. Anal.Google Scholar
  13. 13.
    Kowalik, J. and M.R. Osborne [1968]. Methods for Unconstrained Optimization Problems. A. Elsevier Pub., New York.Google Scholar
  14. 14.
    Lentini, M. [1973]. Correcciones diferidas para problemas de contorno en sistemas de ecuaciones diferenciales de primer orden. Pub. 73-04, Depto. de Comp. Fac. Ciencias, Univ. Central de Venezuela, Caracas.Google Scholar
  15. 15.
    Lentini, M. [1978]. Boundary Value Problems over Semi-Infinite Intervals. Ph.D. Thesis, Cal. Inst. of Technology, 123 pp.Google Scholar
  16. 16.
    Lentini, M. and V. Pereyra [1974]. A variable order finite difference method for nonlinear multipoint boundary value problems, Math. Comp. 28, 981–1004.Google Scholar
  17. 17.
    Lentini, M. and V. Pereyra [1975b]. PASVA2-Two point boundary value problem solver for nonlinear first order systems. Lawrence Berkeley Lab. program documentation Rep.Google Scholar
  18. 18.
    Lentini, M. and V. Pereyra [1978]. An adaptive finite difference solver for nonlinear two point boundary problems with mild boundary layers, SIAM J. Numer. Anal. 14 pp. 91–111. (Also STAN-CS-75-530 [1975a], Comp. Sc. Dept., Stanford Univ.).Google Scholar
  19. 19.
    Meyer, G. H. [1978]. The method of lines for Poisson's equation with nonlinear or free boundary conditions. Numer. Math. 29, pp. 329–344.Google Scholar
  20. 20.
    Ortega, J. M. and W. C. Rheinboldt [1970]. Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York.Google Scholar
  21. 21.
    Pereyra, V. [1965]. The difference correction method for nonlinear two point boundary value problems of class M. Rev. Union Mat. Argentina 22, 184–201.Google Scholar
  22. 22.
    Pereyra, V., W. H. K. Lee and H. B. Keller [1978]. Solving two-point seismic ray-tracing problems in a heterogeneous medium. Part I. A general numerical method based on adaptive finite-differences. In preparation.Google Scholar
  23. 23.
    Pereyra, V. [1967]. Iterated deferred corrections for nonlinear operator equations, Numer. Math 10, 316–323.Google Scholar
  24. 24.
    Pereyra, V. [1968]. Iterated deferred corrections for nonlinear boundary value problems, Numer, Math. 11, 111–125.Google Scholar
  25. 25.
    Pereyra, V. [1973]. High order finite difference solution of differential equations, Comp. Sci. Dept. Stanford Univ. Report STAN-CA-73-348.Google Scholar
  26. 26.
    Pereyra, V. and G. Sewell [1975]. Mesh selection for discrete solution of boundary problems in ordinary differential equations. Numer. Math., 23, 261–268.Google Scholar
  27. 27.
    Russell, R. D. and J. Christiansen [1978]. Adaptive mesh selection strategies for solving boundary value problems.Google Scholar
  28. 28.
    White, A. [1976]. On selection of equidistributing meshes for two-point boundary value problems. CNA-112, Center for Numer. Anal., The Univ. of Texas, Austin. Submitted for publication in SIAM J. Numer. Anal.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • V. Pereyra
    • 1
  1. 1.Applied Mathematics California Institute of TechnologyUSA

Personalised recommendations