Implementation of an iterative technique for the solution of generalized Emden-Fowler eigenproblems

  • R. C. Flagg
  • C. D. Luning
  • W. L. Perry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 76)


Compute Solution Iterative Technique Nonlinear Eigenvalue Problem Integral Equation Formulation Monotone Iterative Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Luning and W. L. Perry, Solution of superlinear eigenvalue problems via a monotone iterative technique. Revision Submitted to Journal of Differential Equations.Google Scholar
  2. 2.
    C. D. Luning and W. L. Perry, Iterative solution of Hartree's equations, Journal of Mathematical Physics, 17 (1976), pp. 1156–1159.CrossRefGoogle Scholar
  3. 3.
    C. D. Luning, An iterative technique for obtaining solutions of a Thomas-Fermi equation, To appear in SIAM J. Math. Anal., June 1978.Google Scholar
  4. 4.
    C. D. Luning and W. L. Perry, An iterative technique for solution of the Thomas-Fermi equation utilizing a nonlinear eigenvalue problem. Quarterly of Applied Mathematics, 35 (1977), pp. 257–268.Google Scholar
  5. 5.
    P. B. Bailey, M. K. Gordon, L. F. Shampine, Solving Sturm-Liouville eigen-value problems, Sandia Laboratories Report SAND 76-0560, October 1976.Google Scholar
  6. 6.
    M. Krasnoselskii, Topological methods in nonlinear intergral equations, Pergamon, New York, 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • R. C. Flagg
    • 1
  • C. D. Luning
    • 2
  • W. L. Perry
    • 1
  1. 1.Texas A&M UniversityCollege Station
  2. 2.Sam Houston State UniversityHuntsville

Personalised recommendations