Advertisement

Infrared problem and zero-mass limit in a model of non-abelian gauge theory

  • G. Curci
  • R. Ferrari
Short Communications
Part of the Lecture Notes in Physics book series (LNP, volume 106)

Abstract

Infrared divergences of Yang Mills theory are regularized by an explicit mass term for the vector meson. By using the invariance properties under Becchi, Rouet and Stora transformations we demonstrate that the theory violates physical unitarity also in the limit of zero mass.

Keywords

Vector Meson Physical Unitarity Infrared Divergence Zero Mass Massless Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1-.
    R.P. Feynman, Acta Phys. Polon. 24, 697 (1963).Google Scholar
  2. 2-.
    L.D. Faddeev and V.N. Popov, Phys. Lett. 25B, 29 (1967).Google Scholar
  3. 3-.
    G.'t Hooft, Nucl. Phys. B33, 173 (1971) and B35, 167 (1971).Google Scholar
  4. 3a-.
    B.W. Lee and J. Zinn-Justin, Phys. Rev. D5, 3121, 3137, 3155 (1972).Google Scholar
  5. 4-.
    C. Becchi, A. Rouet and A. Stora, Ann. Phys. (New York) 98, 287 (1976).Google Scholar
  6. 4a-.
    G. Curci and R. Ferrari, Nuovo Cimento 35A, 474 (1976).Google Scholar
  7. 5-.
    G. Curci and R. Ferrari, Nuovo Cimento 32A, 151 (1976).Google Scholar
  8. 6-.
    C. Becchi, A. Rouet and A. Stora, Phys. Lett. 52B, 344 (1974).Google Scholar
  9. 7-.
    G.'t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).Google Scholar
  10. 7a-.
    C.G. Bollini and J.J. Giambiagi, Nuovo Cimento 12B,20 (1972).Google Scholar
  11. 7b-.
    G.M. Cicuta and E. Montaldi, Lett. Nuovo Cimento 4, 329 (1972).Google Scholar
  12. 7c-.
    P. Breitenlohner and D. Maison, Comm. math. Phys. 52, 11,39,55 (1977).Google Scholar
  13. 8-.
    G. Curci and R. Ferrari, Nuovo Cimento 35A, 1 (1976).Google Scholar
  14. 9-.
    A.A. Slavnov and L.D. Faddeev, Theor. and Math. Phys. 3, 321 (1970).Google Scholar
  15. 9a-.
    A.A. Slavnov, Theor. and Math. Phys. 8, 201 (1972).Google Scholar
  16. 10-.
    H. van Dam and M. Veltman, Nucl. Phys. B22, 397 (1970).Google Scholar
  17. 11-.
    G. Curci and R. Ferrari, Nuovo Cimento 35A, 273 (1976).Google Scholar
  18. 12-.
    A.A. Slavnov, Theor. and Math. Phys. 10, 99 (1972).Google Scholar
  19. 12a-.
    J.C. Taylor, Nucl. Phys. B33, 436 (1971).Google Scholar
  20. 13.
    The same suggestion comes from the analysis of gauge invariance of transition probabilities: G. Curci and E. d'Emilio, “On Gauge Invariance and Perturbative Calculations in Quantum Chromodynamics”, TH.2582-CERN.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • G. Curci
    • 1
  • R. Ferrari
    • 2
    • 3
  1. 1.CERNGenevaSwitzerland
  2. 2.Istituto di FisicaÜniversitá di PisaPisaItaly
  3. 3.Istituto Nazionale di Fisica NucleareSezione di PisaItaly

Personalised recommendations