About the conformal properties of Yang-Mills fields

  • G. Burdet
  • C. Martin
  • M. Perrin
Short Communications
Part of the Lecture Notes in Physics book series (LNP, volume 106)


Gauge Transformation Form Connection Conformal Group Pontryagin Class Hodge Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. KOBAYASHY, K. NOMIZU: “Foundations of differential geometry”, Interscience, New York (1969).Google Scholar
  2. 2.
    M.F. ATIYAH, N.J. HITCHIN, I.M. SINGER: “Self-duality in four-dimensional Riemannian Geometry”, Preprint.Google Scholar
  3. 3a.
    A. TRAUTMAN: International Journal of Theoretical Physics 16, 56 (1977).Google Scholar
  4. 3b.
    R. STORA: “Yang Mills Instantons, Geometrical Aspects”, Erice (1977).CPT 77/P.943Google Scholar
  5. 3b1.
    R. DURIEUX: These de 3e Cycle, Marseille (1978).Google Scholar
  6. 3c.
    A. BELAVIN, A. POLYAKOV, A. SCHWARZ, Yu. TYUPKIN: Phys. Lett. B5 9, 85–87 (1975).Google Scholar
  7. 4.
    R. JACKIW, C. REBBI: Phys. Rev. D 14, 517 (1976).Google Scholar
  8. 5.
    M.F. ATIYAH, N.J. HITCHIN, I.M. SINGER: Proc.Nat.Acad.Sci.U.S.A. 74,2662 (1977).Google Scholar
  9. 6a.
    M.F. ATIYAH, N.J. HITCHIN, V.G. DRINFELD, Yu. I. MANIN: Phys.Lett. 65A, 185 (1978).Google Scholar
  10. 6b.
    J. MADORE, J.L. RICHARD, R. STORA:“An Introduction to the Twistor Programme”, Les Houches (1978).CPT 78/P.1005.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • G. Burdet
    • 1
  • C. Martin
    • 1
  • M. Perrin
    • 1
  1. 1.Laboratoire de Physique MathématiqueUniversite de DijonDijonFrance

Personalised recommendations