Feynman-type integrals defined in terms of general cylindrical approximations

  • Jan Tarski
Section V
Part of the Lecture Notes in Physics book series (LNP, volume 106)


A Feynman-type integral over an abstract Hilbert space is defined in terms of approximations which are determined by finite dimensional projections. One obtains on this basis a theory that appears to be an attractive alternative to other approaches. The usual specialization to nonrelativistic path integrals is discussed, and phase-space integrals as well as integrals for free fields are considered briefly.


Scalar Product Real Hilbert Space Free Field Trace Class Shift Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Itô, in: Proc. 5th Berkeley symposium on mathematical statistics and probability, vol. II part I Univ. California Press, Berkeley, 1966), p. 145.Google Scholar
  2. 2.
    J. Tarski, in: Complex analysis and its applications, vol. III (IAEA, Vienna, 1976), p. 193Google Scholar
  3. 3.
    K.O. Friedrichs and H.N. Shapiro, Proc. Nat. Aced. Sci. (USA) 43, 336 (1957)Google Scholar
  4. 3a.
    K.O. Friedrichs, H.N. Shapiro, et al., Integration of functionals (Courant Institute, New York University, seminar notes, 1957)-Google Scholar
  5. 4.
    J. Tarski, in: IV winter school of theoretical physics, vol. I (Acta Universitatis Wratislaviensis No. 86, Wroc aw, 1966), p. 42.Google Scholar
  6. 5.
    E. Nelson, J. Math. Phys. 5, 332 (1964).Google Scholar
  7. 6.
    A. Truman, J. Math. Phys. 17, 1852 (1976) and in these proceedings.Google Scholar
  8. 7.
    E. Hille and R.S. Phillips, Functional analysis and semigroups, 2nd edition (American Mathematical Society, Providence, R.I. 1957; Colloquium Publicstions vol. XXXI).Google Scholar
  9. 8.
    I.I. Priwalow, Randeigenschaften analytischer Funktionen, 2nd edition (VEB Deutscher Verlag der Wissenschaften, Berlin, 1957, p. 18–19.Google Scholar
  10. 9.
    L. Gross, Trans. Amer. Math. Soc. 105, 372 (1962).Google Scholar
  11. 10.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin-Heidelberg-New York, reprinted-1968), Kap. II, Sek. 11.Google Scholar
  12. 11.
    D. Shale, Trans. Amer. Math. Soc. 103, 149 (1962).Google Scholar
  13. 12.
    T. Kato, Perturbation theory for linear operators (Springer-Verlag, Berlin-Heidelberg-New York, 1966).Google Scholar
  14. 13.
    D. Buchholz and J. Tarski, Ann. Inst. H. Poincaré A-24, 323 (1976).Google Scholar
  15. 14.
    I.E. Segal, Trans. Amer. Math. Soc. 88, 12 (1958).Google Scholar
  16. 15.
    J.L. Doob, Trans. Amer. Math. Soc. 77, 327 (1954).Google Scholar
  17. 16.
    L. Hörmander, An introduction to complex analysis (D. Van Nostrand Company, Inc., Princeton, N.J. 1966, pp. 27–29.Google Scholar
  18. 17.
    Yu.L. Daletskii, Russian Mathematical Surveys 17, No. 5, 1 (1962).Google Scholar
  19. 18.
    K. Gawedzki, Reports on Math. Phys. 6, 327 (1974).Google Scholar
  20. 19.
    J. Tarski, Ann. Inst. H. Poincaré A-15, 107 (1971).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jan Tarski
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations