Geometric quantisation and the Feynman integral

  • D.J. Simms
Section IV
Part of the Lecture Notes in Physics book series (LNP, volume 106)


Normal Bundle Cotangent Bundle Classical Dynamic Geometric Quantisation Path Integral Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Blattner. Quantization and representation theory, Proc. Sympos. Pure Math., vol 26, Amer. Math. Soc., Providence R.I. 1973, pp 147–165Google Scholar
  2. 2.
    V. Guillemin and S. Sternberg. Geometric asymptotics. Math surveys No 14, Amer. Math. Soc., Providence R.I. 1977.Google Scholar
  3. 3.
    B. Kostant. Quantization and unitary representations. 1. Prequantisation, Lecture Notes in Mathematics 170, Springer, Berlin 1970.Google Scholar
  4. 4.
    J. Rawnsley. On the pairing of polarizations, Comm. Math. Physics 58 (1978), 1–8.Google Scholar
  5. 5.
    D.J. Simms and N. Woodhouse. Lectures on geometric quantization. Lecture Notes in Physics no. 53, Springer, Berlin 1976.Google Scholar
  6. 6.
    J.M. Souriau. Structure des systemes dynamiques. Dunod, Paris 1970.Google Scholar
  7. 7.
    J.L. Synge. Classical dynamics. Handbuch der Physik, Vol 111 /1, Principles of classical mechanics and field theory, (ed.) S. Flugge, Springer, Berlin 1960.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D.J. Simms
    • 1
  1. 1.School of MathematicsTrinity CollegeDublin

Personalised recommendations