Null plane fields and automodel random processes

  • L. Streit
Section III
Part of the Lecture Notes in Physics book series (LNP, volume 106)


Renormalization Group Plane Quantization Null Plane Feynman Path Integral Multiplicative Renormalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.R. Bart, S. Fenster: “Free Field Theories of Spin-Mass Trajectories and Quantum Electrodynamics on the Null Plane”, ANL-preprint, June 1976.Google Scholar
  2. [2]
    J.S. Bell, H. Ruegg: “Null Plane Field Theory and Composite Models”, CERN preprint TH 21o1, 1975.Google Scholar
  3. [3]
    P.A.M. Dirac: “Forms of Relativistic Dynamics”, Rev. Mod. Phys. 21, 392 (1949).Google Scholar
  4. [4]
    G. Domokos: “Introduction to the Characteristic Initial Value Problem in Quantum Field Theory”, Lectures at 14th Summer Inst. for Physics, Boulder, Colo., 1971.Google Scholar
  5. [5]
    W. Driessler: “On the Structure of Fields and Algebras on Null Planes I, II”, Acta Phys. Austr. 46, 63, 163 (1977).Google Scholar
  6. [6]
    F. Jegerlehner, Helv. Phys. Acta 46, 824 (1974).Google Scholar
  7. [7]
    W. Karwowski, L. Streit: “A Penormalization Group Model with Non-Gaussian Fixed Paint”, Rep. Math. Phys. 13, 1 (1978).Google Scholar
  8. [8]
    H. Leutwyler, J.R. Klauder, L. Streit: “Quantum Field Theory on Lightlike Slabs”, Il Nuovo Cim. 66A, 536 (1970)Google Scholar
  9. [9]
    S. Schlieder, E. Seiler, Comm. math. Phys. 25, 62 (1972)Google Scholar
  10. [10]
    L. Streit: “Lightlike Data for Quantum Field Theory”, in Proc. XIIIth Winter School for Theoretical Physics, Karpacz 1976, p. 122 ff.Google Scholar
  11. [11]
    J.H. Ten Eyck, F. Rohrlich, Phys. Rev. D9, 2237 (1974).Google Scholar
  12. [12]
    H. Yabuki: “Null Plane Quantization in the Hamiltonian Form of the Feynman Path Integral”, Kyoto University preprint RIMS-183, 1975.Google Scholar
  13. [13]
    I.M. Gelfand, N.Y. Vilenkin: “Generalized Functions“ vol 4, Academic Press, New York 1964.Google Scholar
  14. [14]
    M.M. Rao: “Local Functionals and Generalized Random Fields with Independent Values”, Theory of Probability and its Appl.. XVI, 466, (1971).Google Scholar
  15. [15]
    T. Suzuki, S. Tameike, E. Yamada: “Some Undesirable Features of Field Theory on a Null Plane”, Prog. Theor. Phys. 55, 922 (1976).Google Scholar
  16. [16]
    N. Nakanishi, K. Yamawaki: “A Consistent Formulation of the Null Plane Field Theory”, Nucl. Phys. B122, 15 (1977).Google Scholar
  17. [17]
    R.L. Dobrushin: “Avtomodelnost i renorm-gruppa ohobshčennych poley”, “Gaussovskie i podčinennye Gaussovskim avtomodelnye obobshčennye slučajnye polya”, to appear in Ann. Probability.Google Scholar
  18. [18]
    G. Jona-Lasinio, Cargdse Lectures 1976.Google Scholar
  19. [19]
    V. Enss: “Renormalization Group Limits for Wick Polynomials of Gaussian Processes”, Pep. Math. Phys. 13, 87 (1978).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • L. Streit
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeld

Personalised recommendations