Construction of a class of characteristic functionals

  • R. Gielerak
  • W. Karwowski
  • L. Streit
Session III
Part of the Lecture Notes in Physics book series (LNP, volume 106)


This note presents a construction of generalized random fields (prop. 1 and 2). In particular if we base our construction on a given Euclidean invariant field, the new one will have the same invariance. Similarly the properties of T-positivity and clustering carry over to the new models. A Gaussian input will give rise to non-Gaussian fields such as e.g. the “ultralocal” ones.


Invariant Process Cutoff Function Coincident Point Positive Definiteness Positive Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.M. Gelfand, N.Ya. Vilenkin: Generalized Functions, vol. 4, Applications of Harmonic Analysis. Acad.Press, New York (1964), Ch.II § 2.1.Google Scholar
  2. [2]
    B. Simon: The P((P)2 Euclidean (Quantum) Field Theory. Princeton University Press (1976) § VIII.3Google Scholar
  3. [3]
    J. Fröhlich: Helv. Phys. Acta 47, 265 (1974)Google Scholar
  4. [4]
    J. Klauder: Functional Techniques and their Application in Quantum Field Theory. In Lectures in Theoretical Physics vol. XIV (Boulder 1973)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. Gielerak
    • 1
  • W. Karwowski
    • 1
  • L. Streit
    • 2
  1. 1.Institute of Theoretical Physics, WroclawUniversity WroclawPoland
  2. 2.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations