The polygonal path formulation of the Feynman path integral

  • Aubrey Truman
Section I
Part of the Lecture Notes in Physics book series (LNP, volume 106)


Maslov Index Nonrelativistic Quantum Mechanic Polygonal Path Semiclassical Expansion FEYNMAN Path Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio and R. Høegh-Krohn, ‘Mathematical Theory of Feynman Path Integrals’ (Springer Lecture Notes in Maths 523, Berlin-Heidelberg-New York, 1976).Google Scholar
  2. 2.
    S. Albeverio and R. Høegh-Krohn, Invent. Math. 40, 59–106 (1977).Google Scholar
  3. 3.
    K. Brock, ‘On the Feyman integral', Aarhus University Preprint (1976).Google Scholar
  4. 4.
    R. H. Cameron, J. Mathematical Phys. 39, 126–141 (1960).Google Scholar
  5. 5.
    R. H. Cameron, J. anal. Math. 10, 287–361 (1962).Google Scholar
  6. 6.
    R. H. Cameron and W. T. Martin, Trans. Amer. Math. Soc. 58 No.2, 184–219 (1945).Google Scholar
  7. 7.
    Ph. Combe, G. Rideau, R. Rodriguez and M. Sirugue-Collin, ‘On some mathematical problems in the definition of Feynman path integral', Marseille CPT Preprint (1976).Google Scholar
  8. 8.
    C. DeWitt Morette, Comm. Math. Phys. 28, 47–67 (1972).Google Scholar
  9. 9.
    C. DeWitt Morette, Comm. Math. Phys. 37, 63–81 (1974).Google Scholar
  10. 10.
    C. DeWitt Morette, Ann. Phys. 97, 367–399 (1976).Google Scholar
  11. 11.
    P. A. M. Dirac, ‘Quantum Mechanics’ (Oxford U.P., London, 1930).Google Scholar
  12. 12.
    P. A. M. Dirac, Rev. Modern Phys. 17, 195–199 (1945).Google Scholar
  13. 13.
    K. D. Elworthy and A. Truman, 'Classical mechanics, the diffusion (heat) equation and the Schrödinger equation on a Riemannian manifold' in preparation.Google Scholar
  14. 14.
    R. P. Feynman and A. R. Hibbs, ‘Quantum Mechanics and Path Integrals’ (McGraw-Hill, New York, 1965).Google Scholar
  15. 15.
    R. P. Feynman, Rev. Modern Phys. 20, 367–387 (1948).Google Scholar
  16. 16.
    I. M. Gelfand and A. M. Yaglom, J. Mathematical Phys. 1, 48–69 (1960).Google Scholar
  17. 17.
    M. C. Gutzwiller, J Mathematical Phys. 12, 343–358 (1971).Google Scholar
  18. 18.
    K. Itô in ‘Proceedings of 5th Berkeley Symposium on mathematical statistics and probability'. (University of California Press, Berkeley, 1967) Vol. II part 1 p.145.Google Scholar
  19. 19.
    M. Kac, ‘Probability in the Physical Sciences’ (Interscience, New York, 1959) Chap. IV.Google Scholar
  20. 20.
    M. Kac, Trans. Amer. Math. Soc. 65, 1–13 (1949).Google Scholar
  21. 21.
    P. Kree, ‘Holomorphie et theorie des distributions en dimension infinie', Conference a Campinas, Aout 1975.Google Scholar
  22. 22.
    A. Maheshwari and C. DeWitt Morette, ‘Path integration in nonrelativistic quantum mechanics’ to appear in Physics Reports C.Google Scholar
  23. 23.
    V. P. Maslov, Zh. Vych. Mat. 1, 113–128 (1961).Google Scholar
  24. 24.
    V. P. Maslov, Zh. Vych. Mat. 1, 638–663 (1961).Google Scholar
  25. 25.
    V. P. Maslov, ‘Theorie des Perturbations et Methods Asymptotiques’ (Dunod, Paris, 1972).Google Scholar
  26. 26.
    E. W. Montroll, Commun. Pure Appl. Math. 5, 415–453 (1952).Google Scholar
  27. 27.
    E. Nelson, J. Mathematical Phys. 5, 332–343 (1964).Google Scholar
  28. 28.
    M. Reed and B. Simon, ‘Fourier Analysis, Self-adjointness’ (Academic, New York, 1975)Google Scholar
  29. 29.
    L. Schwartz, Medd. Lunds. Mat. Sem. Supplementband p.196 (1952).Google Scholar
  30. 30.
    G. R. Screaton and A. Truman, J. Mathematical Phys. 14, 982–985 (1973).Google Scholar
  31. 31.
    E. C. Titchmarsh, ‘The Theory of Functions’ (Oxford U.P., London, 1952) p.419.Google Scholar
  32. 32.
    J. Tarski, Ann. Inst. H. Poincaré, A15, 107–140 (1971).Google Scholar
  33. 33.
    J. Tarski, Ann. Inst. H. Poincaré, A17, 313–324 (1972).Google Scholar
  34. 34.
    J. Tarski in ‘Complex Analysis and its Applications’ Vol. III (IAEA, Vienna, 1976).Google Scholar
  35. 35.
    J. Tarski, ‘Definitions and selected applications of Feynman-type integrals', Hamburg University Preprint, 1974.Google Scholar
  36. 36.
    A. Truman, J. Mathematical Phys. 17, 1852–1862 (1976).Google Scholar
  37. 37.
    A. Truman, J. Mathematical Phys. 18, 1499–1509 (1977).Google Scholar
  38. 38.
    A. Truman, J. Mathematical Phys. 18, 2308–2315 (1977).Google Scholar
  39. 39.
    A. Truman, J. Mathematical Phys. 19, 1742–1750 (1978).Google Scholar
  40. 40.
    A. Truman in ‘Vector Space Measures and Applications I', Proceedings Dublin 1977 (Springer Lecture Notes in Maths 644, Berlin-Heidelberg-New York, 1978).Google Scholar
  41. 41.
    A. Truman, ‘The Feynman Map and the anharmonic oscillator’ in preparation.Google Scholar
  42. 42.
    A. Voros, 'semi-classical approximations’ D.Ph. T/74 57 CEA Saclay Report.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Aubrey Truman
    • 1
  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghScotland

Personalised recommendations