Advertisement

Processus de sauts et leurs applications dans la mecanique quantique

  • A. M. Chebotarev
  • V. P. Piaslov
Section I
Part of the Lecture Notes in Physics book series (LNP, volume 106)

Keywords

Soviet Math Feynman Integral Feynman Path Integral Nous Allons Proposition Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Itô K., Generalized Uniform Complex Measures in the Hilbertian Metric Space with their Application to Feynman Integral, Proc. 5th Berkeley Symp. Math. Stat. & Prob. Berkeley & Los Angeles, Univ. of California Press, 1967, 2, 1, 145–161.Google Scholar
  2. [2]
    Maslov V.P., Chebotarev A.M., On Monte-Carlo Calculation of the Feynman Path Integrals in the p-Representation, Proc. Second IMACS Int. Symp. Comp. Meth. for Partial Diff. Eq., Lehigh Univ., Bethlehem, Pa., USA, June 22–24, 1977.Google Scholar
  3. [3]
    Chebotarev A.M., T-Mappings and Functional Integrals, Soviet Math. Dokl., 16, 6, 1975, 1536–1540.Google Scholar
  4. [4]
    Albeverio S., Hoegh-Krohn R., Mathematical Theory of Feynman Path Integrals lect. Math., 1976.Google Scholar
  5. [5]
    von Neuman J., Various Techniques Used in Connection with Random Rigits. MonteCarlo Method, Nath. Bur. Stand. Math. Ser. 12, 1951, 36–38.Google Scholar
  6. [6]
    Nelson E., Feynman Integrals and the Schrodinger Equation, J. Math. Phys., 5, 3 1964, 332–343.Google Scholar
  7. [7]
    Malov V.P., Chebotarev A.M., The Definition of Feynman's Functional Integral in the p-Representation, Soviet Math. Dokl., 17,4, 1976, 975–976.Google Scholar
  8. [8]
    Macдoe B.П., Чeбomapeб A.M., Обoбшeннaя мeра б кoнtитуaлйнom интeгpaлe Фeйнmaнa Teopeтичecкaя и mаtemаtичecкaя Физикa 28, 3, 1976, 291–307.Google Scholar
  9. [9]
    Tarski J., Definitions and selected applications Feynman-type integrals, in Functional integration and its applications, Oxford Univ. Press, London, 1975, 169–180.Google Scholar
  10. [10]
    Maslov V.P., Operational Methods, Moscow, “Mir”, 1976.Google Scholar
  11. [11]
    Maslov V.P., Chebotarev A.M., Representation of the Solution of an Equation of Hartree Type in the Form of a T-Mapping, Soviet Math. Dokl., 16, 3, 1975, 730–734.Google Scholar
  12. [12]
    Macлoe B.ll., Чeбomapeб A.M., Cкaчкooбpазнбe пpoueccы и иx пpиmeнeнаie в кванtoвoй mexаникe, ВИНИTИ, Итoги Наyки, вып. 15, 1978.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. M. Chebotarev
    • 1
  • V. P. Piaslov
    • 1
  1. 1.Institut des Constructions Electroniques de MoscouMoscouURSS

Personalised recommendations