Feynman path integrals and the corresponding method of stationary phase

  • S. Albeverio
  • R. Hoegh-Krohn
Section I
Part of the Lecture Notes in Physics book series (LNP, volume 106)


We give a review of our work concerning the mathematical definition of Feynman path integrals as particular cases of oscillatory integrals on infinite dimensional spaces, to which the finite dimensional theory (in particular the stationary phase method) is extended. Applications are given to quantum mechanics and quantum field theory.


Asymptotic Expansion Stationary Point Phase Function Banach Algebra Anharmonic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.P. FEYNMAN, Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys. 20, 367–337 (1948).Google Scholar
  2. [2]
    S. ALBEVERIO, R. HØEGH-KROHN, Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, 523, Springer, Berlin (1976).Google Scholar
  3. [3]
    S. ALBEVERIO, Mathematical Theory of Feynman Path Integrals, Acta Univ. Wratisl. 368 (1976), XIIth Winter School of Theoretical Physics in Karpacz (1975).Google Scholar
  4. [4]
    P.A.M. DIRAC, The Lagrangian in Quantum Mechanics, Phys. Zeitschr. d. Sovyetunion 3, no 1, 64–72 (1933). See also the references in [2], [3].Google Scholar
  5. [5]
    M. KAC, On a Distribution of Certain Wiener Functionals, Trans. Am. Math. Soc, 65, 1–13 (1949).Google Scholar
  6. [6]
    N. WIENER, Differential Space, J. Math. and Phys. 58, 131–174 (1923).Google Scholar
  7. [7]
    R.H. CAMERON, A Family of Integrals Serving to Connect the Wiener and Feynman Integrals, J. Math. and Phys. 39, 126–141 (1960).Google Scholar
  8. [8]
    J. FELDMAN, On the Schrödinger and Heat Equations, Trans. Am. Math. Soc. 10, 251–264 (1963).Google Scholar
  9. [9]
    D.G. BABBITT, A Summation Procedure for Certain Feynman Integrals, J. Math. Phys. 4, 36–41 (1963).Google Scholar
  10. [10]
    E. NELSON, Feynman Integrals and the Schrödinger Equation, J.Math.Phys. 5, 332–343 (1964). See also e.g. the references under [10], in Ref. [2].Google Scholar
  11. [11]
    S. ALBEVERIO, R. HØEGH-KROHN, Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions, with Applications to the Classical Limit of Quantum Mechanics I, Inventiones Mathem. 40, 59–106 (1977).Google Scholar
  12. [12]
    S. ALBEVERIO, Ph. BLANCHARD, R. HØEGH-KROHN, Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions II. (in preparation)Google Scholar
  13. [12a]
    Someresults of [11] were also shortly described in [3]. For a different approach to the classical limit, using an extended definition of Feynman path integrals, seeGoogle Scholar
  14. [13]
    A. TRUMAN, Feynman Path Integrals and Quantum Mechanics as h → 0, J. Math.Phys. 17, 1852–1362 (1977), and these Proceedings.Google Scholar
  15. [14]
    K. ITO, Generalized Uniform Measures in the Hilbertian Metric Space with their Application to the Feynman Path Integral, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, vol. II, part 1, 145–161 (1967).Google Scholar
  16. [15]
    C. DEWITT-MORETTE, Feynman's Path Integral. Definition without limiting Procedure, Commun.math.Phys. 28, 47–67 (1972); I. Linear and Affine Techniques, II. The Feynman-Green Function, Commun.math.Phys. 37, 63–81 (1974).Google Scholar
  17. [16]
    P. KREE, Théorie des distributions et calculs différentiels sur un espace de Banach, Séminaire P. Lelong, 15e année, Paris 1974–75. See also P.. Krée's contribution to these Proceedings.Google Scholar
  18. [16b]
    For another approach using finitely additive complex measures, see e.g.Google Scholar
  19. [17]
    Yu. L. DALETSKII, Continuous Integrals Connected with Certain Differential Equations, Dokl. Ak. Nauk., 137, 268 (1961)Google Scholar
  20. [17a]
    D.N. DUDIN, Generalized measures or distributions on Hilbert space, Trans. Mosc. M. Soc. 28, 133–157 (1973) (transl.).Google Scholar
  21. [18]
    A.TRUMAN, The classical action in nonrelativistic quantum mechanics, J.Math.Phys. 18,1499–1509 (1977). See also A.Truman in these Proceedings.Google Scholar
  22. [19]
    Ph. COMBE, G. RIDEAU, R. RODRIGUEZ, M. SIRUGUE-COLLIN, On the Cylindrical Approximation of the Feynman Path Integral, Rep. Math. Phys. 13, no 2, 279–294 (1978). For further references connected with this line of work, see also e.g.Google Scholar
  23. [20]
    I.M. GELFAND, A.M. YAGLOM, Integration in Functional Spaces, J.Math.Phys. 1, 48–69 (1960).Google Scholar
  24. [20a]
    L. STREIT, An Introduction to Theories of Integration over Function Spaces, Acta Phys. Austr. Suppl. 2, 2–20 (1966). and e.g.Google Scholar
  25. [21]
    J. TARSKI, Definitions and Selected Applications of Feynman-Type Integrals, pp. 169–180, in “Functional Integration and its Applications”, A.M. Arthurs Edit., Oxford (1975). See also these Proceedings.Google Scholar
  26. [22]
    S. ALBEVERIO, R. HØEGH-KROHN, The Schrödinger Equation for the Relativistic Quantum Fields, in preparation.Google Scholar
  27. [23]
    K. BROCK, On the Feynman Integral, Aarhus University, Mathemat. Inst. Various Publ. Series, no 26 (Oct. 1976).Google Scholar
  28. [24]
    R. H. CAMERON, D.A. STORVICK, An Operator Valued Function Space Integral and a Related Integral Equation, J. Math. and Mech. 18, 517–552 (1968).Google Scholar
  29. [25]
    S.R.S. VARADHAN, unpublished.Google Scholar
  30. [26]
    K. GAWEDZKI, Construction of quantum mechanical dynamics by means of path integrals in phase space, Rep. Math. Phys. 6, 327–342 (1974)Google Scholar
  31. [27]
    W. GARCZYNSKI, Quantum Stochastic Processes and the Feynman Path Integral for a Single Spinless Particle, Repts. Math. Phys. 4, 21–46 (1973).Google Scholar
  32. [28]
    G.N. GESTRIN, On Feynman Integral, Izd. Kark. Univ. 12, 69–81 (1970).Google Scholar
  33. [29]
    G.W. JOHNSON, D.L. SKOUG, A Banach Algebra of Feynman Integrable Functionals with Applications to an Integral Equation formally equivalent to Schrödinger's Equation, J. Funct. Anal. 12, 129–152 (1973).Google Scholar
  34. [30]
    L.D. FADDEEV, P.P. KULISH, Quantization of Particle-Like Solutions in Field Theory, pp. 270–278, “Mathematical Problems in Theoretical Physics”, Proceedings, Rome 1977, Edts. G. Dell'Antonio, S. Doplicher, G. Jona-Lasinio, Lecture Notes in Physics 80, Springer, Berlin (1978).Google Scholar
  35. [31]
    R. HØEGH-KROHN, Relativistic Quantum Statistical Mechanics in Two-Dimensional Space-Time, Commun math. Phys. 38, 195–224 (1974).Google Scholar
  36. [32]
    V.P. MASLOV, The Quasi-Classical Asymptotic Solutions of some Problems in Mathematical Physics, I, J. Comp. Math. 1, 123–141 (1961)(transl.); II, J. Comp. Math. 1, 744–778 (1961) (transl.). See also e.g.Google Scholar
  37. [33]
    V.P. MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) (transl.).Google Scholar
  38. [34]
    L. HÖRMANDER, Fourier Integral Operators I, Acta Math. 127, 79–183 (1971).Google Scholar
  39. [35]
    J.J. DUISTERMAAT, Oscillatory Integrals, Lagrange Inversions and Unfolding of Singularities, Comm. Pure Appl. Math. 27, 207–281 (1974).Google Scholar
  40. [36]
    V.I. ARNOLD, Remarks on the Stationary Phase and Coxeter Numbers, Russ. Math.Surv. 28, 19–48 (1973).Google Scholar
  41. [37]
    J. LERAY, Solutions asymptotiques et groupe symplectique. In Fourier Integral Operators and Partial Differential Equations, pp. 73–97, in Lecture Notes in Mathematics 459, Springer, Berlin (1975). See also e.g. [38], [39].Google Scholar
  42. [38]
    I.N. BERNSHTEIN, Modules over a Ring of Differential Operators. Study of the Fundamental Solution of Equations with Constant Coefficients, Funct. Anal. and its Appl. 5 (2), 89–101 (1971).Google Scholar
  43. [38a]
    B. MALGRANGE, Integrales asymptotiques et monodromie, Ann. Scient. Ec. Norm. Sup. 4e 5., 7, 405–430 (1974).Google Scholar
  44. [39]
    V. GUILLEMIN, S. STERNBERG, Geometric Asymptotics, Am. Math. Soc., Providence (1978).Google Scholar
  45. [40]
    See e.g. [7]-[10],[13]-[29].Google Scholar
  46. [41]
    V.P. MASLOV, A.M. CHEBOTAREV, Generalized Measures and Feynman Path Integrals, Teor. i Mat, Fyz. 28, 3, 291–306 (1976) (russ.).Google Scholar
  47. [42]
    R. HØEGH-KROHN, Partly Gentle Perturbations with Application to Perturbation by Annihilation. Creation Operators, Proc. Nat. Ac. Sci. 58, 2187–2192 (1967).Google Scholar
  48. [43]
    S. ALBEVERIO, R. HØEGH-KROHN, Uniqueness of the Physical Vacuum and the Wightman Functions in the Infinite Volume Limit for some Non Polynomial Interactions, Commun.math.Phys. 30, 171–200 (1973).Google Scholar
  49. [44]
    J.R. KLAUDER, Continuous Representations and Path Integrals, reviseted, Lecture Notes for the NATO Advanced Study Institute on Path Integrals and their Application, Antwerp, Belgium, July 17–30, 1977.Google Scholar
  50. [45]
    S. ALBEVERIO, Ph. BLANCHARD, R. HØEGH-KROHN, The Poisson formula and the ζ-function for the Schrödinger operators, in preparation.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • S. Albeverio
    • 1
    • 2
    • 3
  • R. Hoegh-Krohn
    • 1
    • 2
    • 3
  1. 1.CNRS - CPT MarseilleUniversité d'Aix-Marseille IIUER de Luminy
  2. 2.Fakultät für MathematikUniversität BielefeldNorway
  3. 3.Matematisk InstituttUniversitetet i OsloNorway

Personalised recommendations