Advertisement

Complexity classes of formal languages

Preliminary report
  • Ronald V. Book
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, T., Gill, J. and Solovay, R., Relativization of the P = ? NP question. SIAM J. Computing, 4(1975), 431–422.CrossRefGoogle Scholar
  2. 2.
    Baker, T. and Selman, A., A second step towards the polynomial hierarchy. Theoret. Comput. Sci., to appear.Google Scholar
  3. 3.
    Book, R., Simple representations of certain classes of languages. J. Assoc. Comput. Mach., 25(1978), 23–31.Google Scholar
  4. 4.
    Book, R., Polynomial space and transitive closure. SIAM J. Computing, 8(1979), to appear.Google Scholar
  5. 5.
    Book, R., On languages accepted by space-bounded oracle machines. Acta Informatica, to appear.Google Scholar
  6. 6.
    Book, R., Time, space, and relativizations. In preparation.Google Scholar
  7. 7.
    Book, R., Greibach, S. and Wrathall, C., Reset machines. J. Comput. System Sci., to appear.Google Scholar
  8. 8.
    Book, R. and Nivat, M., Linear languages and the intersection closures of classes of languages. SIAM J. Computing, 7(1978), 167–177.CrossRefGoogle Scholar
  9. 9.
    Book, R., Nivat, M. and Paterson, M., Reversal-bounded acceptors and intersections of linear languages. SIAM J. Computing, 3(1974), 283–295.CrossRefGoogle Scholar
  10. 10.
    Book, R. and Wrathall, C., On languages specified by relative acceptance. Theoret. Comput. Sci., 7(1978), 185–195.CrossRefGoogle Scholar
  11. 11.
    Ginsburg, S., Greibach, S. and Hopcroft, J., Studies in Abstract Families of Languages, Memoir No. 87, Amer. Math. Soc., 1969.Google Scholar
  12. 12.
    Grzegorczyk, A., Some classes of recursive functions. Rozprawy Matematyczne, IV(1953), 1–46.Google Scholar
  13. 13.
    Jones, N., Formal Languages and Rudimentary Attributes, Ph.D. dissertation, University of Western Ontario, 1967.Google Scholar
  14. 14.
    Jones, N., Classes of automata and transitive closure. Info. Control, 13(1968), 207–229.CrossRefGoogle Scholar
  15. 15.
    Kleene, S.C., Introduction to Metamathematics. Van Nostrand, Princeton, N.J., 1952.Google Scholar
  16. 16.
    McCloskey, T., Abstract families of length-preserving processors. J. Comput. System Sci., 10(1975), 394–427.Google Scholar
  17. 17.
    Rogers, H., Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.Google Scholar
  18. 18.
    Simon, I., On Some Subrecursive Reducibilities, Ph.D. dissertation, Stanford University, 1977.Google Scholar
  19. 19.
    Simon, I. and Gill, J., Polynomial reducibilities and upwards diagonalizations. Proc. 9th ACM Symp. Theory of Computing (1977), 186–194.Google Scholar
  20. 20.
    Stockmeyer, L., The polynomial-time hierarchy. Theoret. Comput. Sci., 3(1976), 1–22.CrossRefGoogle Scholar
  21. 21.
    Wrathall, C., Subrecursive Predicates and Automata, Ph.D. dissertation, Harvard University, 1975.Google Scholar
  22. 22.
    Wrathall, C., Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci., 3(1976), 23–33.CrossRefGoogle Scholar
  23. 23.
    Wrathall, C., Rudimentary predicates and relative computation. SIAM J. Computing, 7(1978), 194–209.CrossRefGoogle Scholar
  24. 24.
    Wrathall, C., The linear and polynomial-time hierarchies. In preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Ronald V. Book
    • 1
  1. 1.Department of MathematicsUniversity of California at Santa BarbaraSanta BarbaraU.S.A.

Personalised recommendations