A uniform approach to balanced binary and multiway trees

  • Th. Ottmann
  • D. Wood
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)


Binary Tree Binary Case Splitting Node Insertion Procedure Unary Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHU]
    Aho, A.V., Hopcroft, J.E., and Ullman, J.D.: The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., (1974).Google Scholar
  2. [BM]
    Bayer, R. and McCreight, E.: Organization and Maintenance of Large Ordered Indexes, Acta Informatica 1, 1972, 173–189.CrossRefGoogle Scholar
  3. [COW]
    Culik II, K., Ottmann, Th., and Wood, D.: Dense multiway trees, Report 77, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Universität Karlsruhe, 1978.Google Scholar
  4. [K]
    Knuth, D.: The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, Mass., (1973).Google Scholar
  5. [KW]
    Kwong, Y.S. and Wood, D.: T-Trees: A variant of B-trees, Computer Science Technical Report 78-CS-18, McMaster University, Hamilton, Ontario, 1978.Google Scholar
  6. [OW]
    Ottmann, Th. and Wood, D.: 1–2 brother trees or AVL trees revisited, to appear in Computer Journal (1979).Google Scholar
  7. [Y]
    Yao, A.: On random 2,3 trees, Acta Informatica 9, 1978, 159–170.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Th. Ottmann
    • 1
  • D. Wood
    • 2
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversität KarlsruheW-Germany
  2. 2.Dept. of Applied MathematicsMcMaster UniversityHamiltonCanada

Personalised recommendations