A reduct-and-closure algorithm for graphs

  • Alla Goralčíková
  • Václav Koubek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)


Time Complexity Transitive Closure Height Function 12th Annual Symposium Strong Connectedness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, M. R. Garey, J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput., 1:2(1972), 131–137.CrossRefGoogle Scholar
  2. 2.
    A. V. Aho, J. E. Hopcroft, J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, 1974.Google Scholar
  3. 3.
    G. Birkhoff, Lattice theory, Amer. Math. Soc., vol. XXV (1967).Google Scholar
  4. 4.
    M. Demlová, J. Demel, V. Koubek, Several algorithms for finite algebras, to appear in FCT 1979.Google Scholar
  5. 5.
    M. J. Fischer, A. R. Meyer, Boolean matrix multiplication and transitive closure, IEEE 12th Annual Symposium on Switching and Automata Theory (1971), 129–131.Google Scholar
  6. 6.
    H. B. Hunt III, T. G. Szymanski, J. D. Ullman, Operations on sparse relations, Comm. ACM 20:3(1977), 172–176.Google Scholar
  7. 7.
    R. E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput.,1:2(1972), 146–160.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Alla Goralčíková
    • 1
  • Václav Koubek
    • 1
  1. 1.Computational CentreCharles UniversityPraha 1Czechoslovakia

Personalised recommendations