On the weighted path length of binary search trees for unknown access probabilities

  • Thomas Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)


Search Tree Shannon Entropy Probability Vector Binary Search Tree Access Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilbert, E.N. and Moore, E.F., Variable-length binary encodings. Bell System Tech. J., 38 (1959), 933–968.Google Scholar
  2. 2.
    Knuth, D.E., Optimum binary search trees. Acta Informatica, 1 (1971), 14–25.CrossRefGoogle Scholar
  3. 3.
    —, The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison — Wesley Publ. Co., Reading, Mass., 1973.Google Scholar
  4. 4.
    Fredman, M.L., Two applications of a probabilistic search technique: Sorting X+Y and building balanced search trees. Proc. 7th Annual ACM Symposium on Theory of Computing, 1975.Google Scholar
  5. 5.
    Mehlhorn, K., A best possible bound for the weighted path length of binary search trees. SIAM J. Comput. 6 (1977), 235–239.CrossRefGoogle Scholar
  6. 6.
    Allan, B. and Munro, I., Self-organizing binary search. Proc. 17th Symp. on Foundations of Computer Science, 1976.Google Scholar
  7. 7.
    Mehlhorn, K., Dynamic binary search. Lecture Notes Computer Science, Vol. 52. Springer — Verlag, Berlin etc., 1977, 323–336.Google Scholar
  8. 8.
    Kerridge, D.F., Inaccuracy and inference. J. Royal Stat. Soc., B 23 (1961), 184–194.Google Scholar
  9. 9.
    Golstein, E.G., Konvexe Optimierung. Akademie — Verlag, Berlin, 1973.Google Scholar
  10. 10.
    Fischer, Th., Über universelle Codierungen und Suchprozesse. Schriftenreihe Weiterbildungszentrum MKR, Heft 30 (1978), Technical University of Dresden.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Thomas Fischer
    • 1
  1. 1.Department of Mathematics DDRTechnical University of DresdenDresdenGerman Democratic Republic

Personalised recommendations