Advertisement

Program equivalence and provability

  • G. Cousineau
  • P. Enjalbert
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)

Abstract

Given a Hoare-like deduction system in which can be proved partial correctness assertions of the form [P] S [Q],where S is a program and P, Q are first-order formulas, we are interested in the following question : "If ⊩[P] S1

Keywords

Proof System Deductive System Atomic Formula Predicate Symbol Syntactic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K. Bergstra, J. and Meerteens L., Recursive assertions are not enough-or are they ? Theor. Comput. Sci. 8, 1 (February 1979).Google Scholar
  2. 2.
    Clarke,E., Programming language constructs for which it is impossible to obtain "good" Hoare like axiom systems. Fourth ACM Symposium on Principles of Programming Languages (1977).Google Scholar
  3. 3.
    Cook, S., Soundness and completeness for program verification, SIAM Journal of Computing 7, 1 (1978).CrossRefGoogle Scholar
  4. 4.
    Courcelle, B. and Nivat, M., The algebraic semantics of recursive program schemes. MFCS 1978, Springer Lecture Notes no62.Google Scholar
  5. 5.
    Cousineau, G.,The algebraic structure of flowcharts.This symposium.Google Scholar
  6. 6.
    Cousineau, G., An algebraic definition for control structures. To appear in Theor. Comput. Sci.Google Scholar
  7. 7.
    Doner, Tree acceptors and some of their applications. J. of Comput. and System Sci. 4 (1970).Google Scholar
  8. 8.
    Enjalbert, P., Systèmes de déduction pour les arbres et les schémas de programmes. 4ème Colloque de Lille sur les arbres en algèbre et en programmation (1979).Google Scholar
  9. 9.
    Gorelick, G., A complete axiomatic system for proving assertions about recursive and non-recursive programs. Technical Report no 75. University of Toronto (January 1975).Google Scholar
  10. 10.
    Harel, D., Meyer, A. and Pratt, V., Computability and completeness in logics of programs. 9th ACM symposium on Theory of Computing. Boulder (1977).Google Scholar
  11. 11.
    Ianov, I., The logical schemes of algorithms. In:Problems of cybernetics, Pergamon Press (1960).Google Scholar
  12. 12.
    Lukham, D., Park, D., and Paterson, M., On formalized computer programs. J. of Comput. and System Sci. 4 (1970).Google Scholar
  13. 13.
    Manna, Z., Mathematical theory of computation, Mc Graw-Hill (1974).Google Scholar
  14. 14.
    Wand, M., A new incompletness result for Hoare's systems. JACM 25, 1 (1978).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • G. Cousineau
    • 1
  • P. Enjalbert
    • 2
  1. 1.L.I.T.P.Université PARIS VIParis 5France
  2. 2.THOMSON-CSF/LCR Domaine de CorbevilleOrsayFrance

Personalised recommendations