Relationships between AFDL's and cylinders

  • Jean-Michel Autebert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)


Finite Automaton Elementary Factor Marked Union Deterministic Finite Automaton Mathematical System Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.M. AUTEBERT, Non-principalité du cylindre des langages à compteur, Mathematical Systems Theory, 11 (1977) p. 157–167.CrossRefGoogle Scholar
  2. [2]
    J.M. AUTEBERT, Cylindres de langages algébriques, Thèse de Doctorat d'Etat, publication du LITP no78-37,Paris, 1978.Google Scholar
  3. [3]
    J.M. AUTEBERT, Opérations de cylindre et applications séquentielles gauches inverses, to appear in Acta Informatica.Google Scholar
  4. [4]
    J.M. AUTEBERT, The AFDL of deterministic realtime context-free languages is principal, submitted for publication.Google Scholar
  5. [5]
    L. BOASSON, Cônes Rationnels et Familles Agréables de Langages. Application aux Langages à Compteur, Thèse de 3ème cycle, Paris VII, 1971.Google Scholar
  6. [6]
    L. BOASSON and M. NIVAT, Sur diverses familles de langages fermées par transduction rationnelle, Acta Informatica, 2 (1973) p. 180–188.Google Scholar
  7. [7]
    L. BOASSON and M. NIVAT, Le cylindre des langages linéaires, Mathematical Systems Theory, 11 (1977) p. 147–155.CrossRefGoogle Scholar
  8. [8]
    W.J. CHANDLER, Abstract families of deterministic languages, Proc. 1st ACM Conf. on Theory of Computing, Marina del Rey, Calif. (1969), p. 21–30.Google Scholar
  9. [9]
    S. EILENBERG, Communication au Congrès International des Mathématiciens, Nice, 1970.Google Scholar
  10. [10]
    C.C. ELGOT and J.E. MEZEI, On relations defined by generalized finite automata, IBM Journal of Research and Dev., 9 (1962) p. 47–68.Google Scholar
  11. [11]
    S. GINSBURG, The Mathematical Theory of Context-free Languages, Mc Graw-Hill, New-York, 1966.Google Scholar
  12. [12]
    S. GINSBURG and J. GOLDSTINE, On the largest full sub-AFL of an AFL, Mathematical Systems Theory, 6 (1972) p. 241–242.Google Scholar
  13. [13]
    S. GINSBURG and S.A. GREIBACH, Abstract Families of Languages, in:Studies in Abstract Families of Languages, Memoirs of the Amer. Math. Soc., 87 (1969) p. 1–32.Google Scholar
  14. [14]
    S. GINSBURG and S.A. GREIBACH, Principal AFL, J. Comput. System Sci., 4 (1970) p. 308–338.Google Scholar
  15. [15]
    S.A. GREIBACH, Chains of full AFL's, Mathematical Systems Theory, 4 (1970) p. 231–242.CrossRefGoogle Scholar
  16. [16]
    S.A. GREIBACH, The hardest C.F. languages, SIAM Journal on Computing, 2 (1973) p. 304–310.CrossRefGoogle Scholar
  17. [17]
    S.A. GREIBACH, Jump PDA's and hierarchies of deterministic C.F. languages, SIAM Journal on Computing, 3 (1974) p. 111–127.CrossRefGoogle Scholar
  18. [18]
    M. NIVAT, Transductions des langages de Chomsky, Annales de l'Institut Fourier, 18 (1968) p. 339–456.Google Scholar
  19. [19]
    A. SALOMAA, Formal Languages, Academic Press, New-York, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Jean-Michel Autebert
    • 1
  1. 1.Laboratoire associé du CNRS : Informatique Théorique et Programmation et Institut de ProgrammationUniversité Paris VIFrance

Personalised recommendations