Advertisement

Searching, sorting and information theory

  • Kurt Mehlhorn
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)

Keywords

Search Tree Plausibility Argument Prefix Code Double Rotation Alphabetic Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Adel'son-Velskii, Landis: An algorithm for the organization of information, Soviet Math. Dokl, 3, 1259–1262.Google Scholar
  2. Allan, B., Munro, I.: Self-Organizing Binary Search Trees, JACM, Vol. 25 (1978), pp. 526–535.CrossRefGoogle Scholar
  3. Altenkamp, D., Mehlhorn, K.: Codes: Unequal Letter Costs, Unequal Probabilities, Technical Report A 78/18, FB 10, Universität des Saarlandes (preliminary version: 5th Colloquium on Automata, Languages and Programming, Udine, 1978, Lecture Notes in Computer Science 62, pp. 15–25.Google Scholar
  4. Baer, J. L.: Weight-balanced trees, Proc. AFIPS, Vol. 44, 1975, pp. 467–472.Google Scholar
  5. Bayer, P. J.: Improved Lower Bounds on the Cost of Optimal and Balanced Binary Search Trees, Technical Report, Dept. of Computer Science, MIT.Google Scholar
  6. Brown, M.R., Tarjan, R.E.: A Representation for Linear Lists with Movable Fingers, 10th ACM Symposium on Theory of Comouting, pp. 19–29, 1978.Google Scholar
  7. Bruno, J., Coffman, E.G.: Nearly Optimal Binary Search Trees (IFIP 1971, North Holland 1972, pp. 99–103).Google Scholar
  8. Cot, H.: Characterization and Design of Optimal Prefix Codes, Ph. D. Thesis, Stanford University, June 1977.Google Scholar
  9. Csiszar: Simple Proofs of some theorems on noiseless channels, Inf. and Control 14, pp. 285–298, 1969.Google Scholar
  10. Fredman, M.L. (a): Two Applications of a Probabilistic Search Technique: Sorting X+Y and Building Balanced Search Trees, 7th ACM Symposium on Theory of Computing, 1975, pp. 240–244.Google Scholar
  11. Fredman, M.L. (b): How good is the information theory bound in sorting, TCS 1, (4), pp. 355–362, 1976.Google Scholar
  12. Garsia, A.M., Wachs, M.L.: A new algorithm for minimum cost binary trees, SICOMP, No 4, 1977, pp. 622–642.Google Scholar
  13. Gotlieb, Walker: A Top-Down Algorithm for Constructing Nearly Optimal Lexicographical Trees, Graph Theory and Computing, Academic Press, 1972.Google Scholar
  14. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation for linear lists, 9th ACM Symposium on Theory of Computing, 1977, pp. 49–60.Google Scholar
  15. Güttler, R., Mehlhorn, K., Schneider, W.: Binary Search Trees: Average and Worst Case Behavior, GI-Jahrestagung 1976, Informatik Fachberichte 5, pp. 301–317.Google Scholar
  16. Harper, Pague, Savage, Straus: Sorting X+Y, CACM 18, 6 (1975), pp. 347–350.Google Scholar
  17. Horibe, Y.: An improved bound for weight balanced trees, Inf. and Control 34, 1977.Google Scholar
  18. Horibe, Y., Nemetz, T.: On the Max-Entropy Rule for a Binary Search Tree, Technical Report, Mathematical Institute, Hungarian Academy of Sciences.Google Scholar
  19. Hu, Tucker: Optimum Computer Search Trees, SIAM J. of Applied Math. 21, 1971, pp. 514–532.CrossRefGoogle Scholar
  20. Huffman: A method for the Construction of Minimum-Redundancy Codes, Proc. IRE 40, 1098–1101, 1952.Google Scholar
  21. Itai, A.: Optimal Alphabetic Trees, SIAM J. on Computing, Vol. 5, No. 1, March 1976, pp. 9–18.CrossRefGoogle Scholar
  22. Katona, G., Nemetz, T.: Huffman Codes and Self Information, IEEE Transactions on Information Theory, May 1976, pp. 337–340.Google Scholar
  23. Knuth, D.E. (a): Optimum Binary Search Trees, Acta Informatica 1, 1971, pp. 14–25.Google Scholar
  24. Knuth, D.E.: The Art of Computer Programming, Vol 3: Sorting and Searching, Addison Wesley, 1973.Google Scholar
  25. Krause: Channels which transmit letters of unequal duration, Inf. and Control 5, pp. 13–24, 1962.Google Scholar
  26. Mehlhorn, K. (a): Dynamic Binary Search, 4th Colloquium on Automata, Languages and Programming, Turku, 1977, Springer Lecture Notes 52, pp. 323–336 (to appear SIAM J. on Computing).Google Scholar
  27. Mehlhorn, K. (b): Sorting Presorted Files, 4th GI-Conference on Theoretical Computer Science, Aachen, 1979.Google Scholar
  28. Mehlhorn, K. (c): Effiziente Algorithmen, Teubner Verlag, Studienbücher Informatik, 1977.Google Scholar
  29. Mehlhorn, K. (d): An Efficient Algorithm for the Construction of Nearly Optimal Prefix Codes, Technical Report A 78/13, FB 10, Universität des Saarlandes, submitted for publication.Google Scholar
  30. Mehlhorn, K., Tsagarakis, M.: On the isomorphism of two algorithms: Hu/Tucker and Garsia/Wachs, 4ième Colloque de Lille "Les Ärbes en Algebre et en Programmation", Lille 1979.Google Scholar
  31. van Leeuwen, J. (a): The complexity of data organization, 1976, Mathematical Centre Tract 81, pp. 37–147.Google Scholar
  32. van Leeuwen, J. (b): On the construction of Huffmann Trees, 3rd ICALP (1976), pp. 382–410, Ed. S. Michaelson and R. Milner, Edinburgh University Press.Google Scholar
  33. Unterauer, K.: Optimierung gewichteter Binärbäume zur Organisation geordneter dynamischer Dateien, Doktorarbeit, TU München, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Kurt Mehlhorn
    • 1
  1. 1.Fachbereich 10 – Angewandte Mathematik und InformatikUniversität des SaarlandesSaarbrückenBRD

Personalised recommendations