Critical dynamics below Tc

  • P. Szépfalusy
Mode-Coupling and the Dynamical Renormalization Group
Part of the Lecture Notes in Physics book series (LNP, volume 104)


Going below the critical temperature, the existence of a non-zero average value of the order parameter induces qualitatively new features in the critical behaviour in a variety of systems. A crucial role is played by the symmetry in the intrinsic space of the order parameter degrees of freedom. This lecture is focused on rotationally invariant systems, others are only briefly mentioned.

At first, properties of the isotropic multicomponent systems are described on a phenomenological basis in cases of purely dissipative systems and of systems with reversible mode coupling as well. The main feature is that the orientational fluctuations are dominating the large-distance, long-time behaviour of the system, and the parallel and longitudinal order parameter correlation functions can be expressed in terms of the correlation function for the orientational fluctuations. In the purely relaxational model such qualitative arguments predict a power-law decay in space and time of the correlation functions.

These properties are subsequently considered within the framework of the semimacroscopic theory. In this context the theoretical means to handle the problems in the ordered phase i.e. new type of building blocks replacing the usual self energies are introduced, both for the transverse and longitudinal order parameter response and correlation functions. It is shown how characteristics of the Goldstone mode can be expressed in terms of them. The longitudinal correlation function is discussed especially from the point of view of how the results of the phenomenological considerations can be justified.

Special emphasis is given to purely dynamic effects, such as the Goldstone-mode induced singularity in the transport coefficient of the parallel total magnetization in an isotropic antiferromagnet, recently investigated also experimentally. It is shown that the theory can account for the experimental findings in RbMnr3 , not only concerning the wave-number dependence of the transport coefficient in the hydrodynamic region but also regarding its magnitude.


Correlation Function Transport Coefficient Relaxational Model Dynamical Critical Exponent Heisenberg Ferromagnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.I. Halperin and P.C. Hohenberg, Phys. Rev. 188, 898 (1969)CrossRefGoogle Scholar
  2. 2.
    A.Z. Patashinskii and V.L. Pokrovskii, Zsetf 64, 1445 (1973) (JETP 37, 733, 1973)Google Scholar
  3. 3.
    K. Kawasaki and H. Mori, Prog. Theor. Phys. 25, 1043 (1961)Google Scholar
  4. 4.
    E. Brézin, D.J. Wallace, and K.G. Wilson, Phys. Rev. B7, 232 (1973)Google Scholar
  5. 5.
    E. Brézin and D.J. Wallace, Phys. Rev. B7, 1967 (1973)Google Scholar
  6. 6.
    D.J. Wallace and R.K.P. Zia, Phys. Rev. B12, 5340 (1975)Google Scholar
  7. 7.
    D.R. Nelson, Phys. Rev. B13, 2222 (1976)Google Scholar
  8. 8.
    L. Schäfer and H. Horner, Z. Physik B29, 251 (1978)Google Scholar
  9. 9.
    R.A. Ferrell,N. Menyhárd, H. Schmidt, F. Schwabl and P. Szépfalusy, Annals of Phys. 47, 565 (1968)CrossRefGoogle Scholar
  10. 10.
    B.I. Halperin and P.C. Hohenberg, Phys. Rev. 177, 952 (1969)CrossRefGoogle Scholar
  11. 11.
    P.C. Hohenberg and B.I. Halperin, Rev. Mod. Pte. 49, 435 (1977)CrossRefGoogle Scholar
  12. 12.
    L. Sasvári, F. Schwabl and P. Szépfalusy, Physica 81A, 108 (1975)Google Scholar
  13. 13.
    P.C. Hohenberg, A. Aharony, B.I. Halperin and E.D. Siggia, Phys. Rev. B13, 2986 (1976)Google Scholar
  14. 14.
    K. Kawasaki, in Phase Transitions and Critical Phenomena, ed. C. Domb and M.S. Green (Academic, New York, 1976), Vol. 5aGoogle Scholar
  15. 15.
    K. Kawasaki and J.D. Gunton, Critical Dynamics, Progress in Liquid Physics, ed. C.A. Croxton (Wiley, New York, 1976) Chap. 5Google Scholar
  16. 16.
    L. Sasvári and P. Szépfalusy, Physica 87A, 1 (1977)Google Scholar
  17. 17.
    L. Sasvâri and P. Szépfalusy, Physica 90A, 626 (1978)Google Scholar
  18. 18.
    E.D. Siggia, Phys. Rev. B13, 3218 (1976)Google Scholar
  19. 19.
    P.C. Hohenberg, E.D. Siggia, B. I. Halperin, Phys. Rev. B14, 2865 (1976)Google Scholar
  20. 20.
    G.F. Mazenko, M.J. Nolan, R. Freedman, Phys. Rev. B18, 2281 (1978)Google Scholar
  21. 21.
    S.Ma and G.F. Mazenko, Phys. Rev. B11, 4077 (1975)Google Scholar
  22. 22.
    P.C. Martin, E.D. Siggia and H.A. Rose, Phys. Rev. A8, 423 (1973)Google Scholar
  23. 23.
    T. Tél, Diploma work, 1975 (Roland Eötvös, University, Budapest)Google Scholar
  24. 24.
    G.F. Mazenko, Phys. Rev. B14, 3933 (1976)Google Scholar
  25. 25.
    L. Schäfer, Z. Physik,B31, 289 (1978)Google Scholar
  26. 26.
    G. Meissner and P. Szepf-alusy, to be publishedGoogle Scholar
  27. 27.
    E.F. Steigmeier and H. Auderset, Solid State Commun. 12, 565 (1973)CrossRefGoogle Scholar
  28. 28.
    J. Villain, Solid State Commun. 8, 31 (1970)CrossRefGoogle Scholar
  29. 29.
    K.H. Michel and F. Schwabl, Z. Phys. 240, 354 (1970)CrossRefGoogle Scholar
  30. 30.
    U. Deker and F. Haake, Phys. Rev. A11, 2043 (1975)Google Scholar
  31. 31.
    L. Sasvári and P. Szepfalusy, to be—publishedGoogle Scholar
  32. 32.
    P.M. Horn, J.M. Hastings and L.M. Corliss, Phys. Rev. Lett. 40, 126 (1978)CrossRefGoogle Scholar
  33. 33.
    K. Kawasaki, Ann. Phys. 61, 1 (1970)CrossRefGoogle Scholar
  34. 34.
    P.C. Hohenberg, M. DeLeener and R. Resibois, Physica 65, 505 (1973)CrossRefGoogle Scholar
  35. 35.
    L. Sasvári, J. Phys. C10, L633, (1977)Google Scholar
  36. 36.
    F. Schwabl and K.H. MicTiel, Phys. Rev. B2, 189 (1970)Google Scholar
  37. 37.
    F. Schwabl, Z. Physik, 246, 13 (1971)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. Szépfalusy
    • 1
  1. 1.Universität des Saarlandes - Theoretische PhysikSaarbrückenGermany

Personalised recommendations