Fully developed turbulence and renormalization group

  • P. L. Sulem
  • J. D. Fournier
  • A. Pouquet
Hydrodynamic Instabilities and Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 104)


Renormalization Group Lorentz Force Critical Phenomenon Inertial Range Energy Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABARBANEL, H.D.I. (1978) Character of homogeneous turbulence. Preprint. FERMILAB-PUB. 78/28-THY.Google Scholar
  2. ANDRE, J.C. and LESIUER, M. (1977) J. Fluid Mech. 81, 187.Google Scholar
  3. AREF, H. (1978) Dynamics of point vortices and the inverse cascade. Preprint. Dept. Physics. Cornell University.Google Scholar
  4. BATCHELOR, G.K. and TOWNSEND, A.A. (1949) Proc. Roy. Soc. A 199, 238.Google Scholar
  5. BELL, T.L. and NELKIN, M. (1977) Phys. Fluids 20, 345.CrossRefGoogle Scholar
  6. BELL, T.L. and NELKIN, M. (1978) J. Fluid Mech. 88, 369.Google Scholar
  7. BREZIN, E., LE GUILLOU J.C. and ZINN-JUSTIN, J. (1977) in “Phase Transition and Critical Phenomena”. C. Domb and M.S. Green eds. Academic Press.Google Scholar
  8. DE DOMINICS, C. and MARTIN, P.C. (1979) Phys. Rev. A 19, 419.CrossRefGoogle Scholar
  9. DE DOMINICIS, C. and PELITI, L. (1978) Phys. Rev. B 18 353.CrossRefGoogle Scholar
  10. DE GENNES, P.G. (1975) in “Fluctuation, Instability and Phase Transition”. (Proc. NATO Advance Study Institute, Jeilo, Norway). T. Riste ed. Noordhoff, Leiden, series B, p. 1.Google Scholar
  11. ENZ, C.P. (1978) Physica 94 A, 20.Google Scholar
  12. FORSTER, D., NELSON, D.R. and STEPHEN, M.J. (1976) Phys. Rev. Lett. 36, 867.CrossRefGoogle Scholar
  13. FORSTER D., NELSON D.R. and STEPHEN, M.J. (1977) Phys. Rev. A 16, 732.CrossRefGoogle Scholar
  14. FOURNIER, J.D. (1977) Quelques méthodes systématiques d'approximation en turbulence homogène. These de 3ème Cycle. Université de Nice.Google Scholar
  15. FOURNIER, J.D. and FRISCH, U. (1978) Phys. Rev. A 17, 747.CrossRefGoogle Scholar
  16. FOURNIER, J.D., FRISCH, U. and ROSE, H.A. (1978) J Phys. A 11, 187.Google Scholar
  17. FRISCH, U., LESIUER, M. and SULEM, P.L. (1976) Phys. Rev. Lett. 37, 895.CrossRefGoogle Scholar
  18. FRISCH, U., SULEM, P.L. and NELKIN, M. (1978) J. Fluid Mech. 87, 719.Google Scholar
  19. GOLLUB, J. and SWINNEY, H. (1975) Phys. Rev. Lett. 35, 927.CrossRefGoogle Scholar
  20. HEISENBERG, W. (1948) Z. Phys. 124, 628.CrossRefGoogle Scholar
  21. HERRING, J.R. and KRAICHNAN, R.H. (1972) in “Statistical Models and Turbulence” p. 148. M. Rosenblatt and C. Van Atta eds. Lecture Notes in Physics 12, Springer Verlag.Google Scholar
  22. HORNER, H. and LIPOWSKY, R. (1979) On the theory of turbulence: a non-Eulerian renormalized expansion. Preprint. Inst. für Theoretisch Physik. Universität Heidelberg.Google Scholar
  23. KAWASAKI, K. (1968) Progr. Theor. Physics 39, 1133.Google Scholar
  24. KAWASAKI, K. (1969) J. Phys. Soc. Japan 26 Suppl. 160.Google Scholar
  25. KOLMOGOROV, A.N. (1941) C.R.Ac.Sc. U.R.S.S. 30, 301.Google Scholar
  26. KOLMOGOROV, A.N. (1962) J. Fluid Mech. 13, 82.Google Scholar
  27. KRAICHNAN, R.H. (1958) Proc. 2nd Symp. on Naval Hydrodynamics, p. 29. R. Cooper ed. ACR-38. Office of Naval Research. Dept. Navy. Washington.Google Scholar
  28. KRAICHNAN, R.H. (1959) J. Fluid Mech. 5, 497.Google Scholar
  29. KRAICHNAN, R.H. (1964) Phys. Fluids 7 1723.Google Scholar
  30. KRAICHNAN, R.H. (1965) Phys. Fluids 8, 575; erratum 9, 1884.CrossRefGoogle Scholar
  31. KRAICHNAN, R.H. (1967) Phys. Fluids 10, 1417.CrossRefGoogle Scholar
  32. KRAICHNAN, R.H. (1971a) J. Fluid. Mech. 47, 513.Google Scholar
  33. KRAICHNAN, R.H. (1971b) J. Fluid. Mech. 47, 525.Google Scholar
  34. KRAICHNAN, R.H. (1975a) Avances in Math. 16, 305.Google Scholar
  35. KRAICHNAN, R.H. (1975b) J. Fluid Mech. 67, 155.Google Scholar
  36. KRAICHNAN, R.H. (1977) J. Fluid Mech. 83, 349.Google Scholar
  37. KUO, A.Y. and CORRSIN, S. (1971) J. Fluid Mech. 50, 285.Google Scholar
  38. KUO, A.Y. and CORRISIN S. (1972) J. Fluid Mech. 56, 447.Google Scholar
  39. LEITH, C.E. (1971) J. Atm. Sc. 28, 145.CrossRefGoogle Scholar
  40. LESLIE, D.C. (1973) Development in the Theory of Turbulence. Clarendon Press (Oxford).Google Scholar
  41. LORENZ, E.N. (1963) J. Atm. Sc. 20, 130.CrossRefGoogle Scholar
  42. LÜCKE, M. (1978) Phys. Rev. A 18, 282.Google Scholar
  43. MA, S. and MAZENKO, G.F. (1975) Phys. Rev. B 11, 4077.Google Scholar
  44. MANDELBROT, B.B. (1974) J. Fluid Mech. 62, 331.Google Scholar
  45. MANDELBROT, B.B. (1976) in “Turbulence and Navier-Stokes Equatiom”. p. 121 R. Temam ed. Lecture Notes in Mathematics 565, Springer Verlag.Google Scholar
  46. MARTIN, P.C. (1976) J. Phys. (Paris) Suppl. 37, C1–57.Google Scholar
  47. MARTIN, P.C. and DE DOMINICIS, C. (1978) The Long Distance Behaviour of Randomly Stirred Fluids. Preprint. Havard University.Google Scholar
  48. MARTIN, P.C., SIGGIA, E.D. and ROSE, H.A. (1973) Phys. Rev. A 8, 423.Google Scholar
  49. MOFFATT, H.K. (1978) Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographes of Mechanics and Applied Mathematics. Cambridge University Press.Google Scholar
  50. MONIN, A. and YAGLOM, A.M. (1971) vol. 1; (1975) vol. 2. Statistical Fluid Mechanics: Mechanics of Turbulence. English edition J.L. Lumley ed. MIT Press (Cambridge).Google Scholar
  51. NELKIN, M. (1974) Phys. Rev. A 9, 388.Google Scholar
  52. NELKIN, M. (1975) Phys. Rev. A 11, 1737.Google Scholar
  53. NELKIN, M. (1978) in Proc. 13th IUPAP Conf. on Stat. Phys. (Haifa, August 1977) p. 235. D. Cabib, C.G. Kuper and I. Riess eds. Annals Israel Phys. Soc. vol. 2.Google Scholar
  54. NORMAND, C., POMEAU, Y., VELARDE, M.G. (1977) Rev. Mod. Phys. 49, 581.CrossRefGoogle Scholar
  55. NOVIKOV, E.A. and STEWART, R.W. (1964) Izv. Akad. Nauka SSSR, Ser. Geofiz. 3, 408.Google Scholar
  56. OBUKHOV, A.M. (1962) J. Fluid Mech. 12, 77.Google Scholar
  57. ORSZAG, S.A. (1976) Proc. 5th Int. Conf. on Numerical Methods in Fluid Dynamics, p. 32. I.A. Van de Vooren and P.J. Zandbergen eds. Lecture Notes in Physics 59, Springer-Verlag.Google Scholar
  58. ORSZAG, S.A. (1977) in Fluid Dynamics, p. 235. Les Houches Summer School of Theoretical Physics (1973). R. Balian and J.L. Peube eds. Gordon and Breach.Google Scholar
  59. ORSZAG, S.A. and KRUSKAL, M.O. (1968) Phys. Fluids 11, 43.Google Scholar
  60. ORSZAG, S.A. and PATTERSON, G.S. (1972) Phys. Rev. Lett. 28, 76; also in “Statistical Models and Turbulence” p. 127. M. Rosenblatt and C. Van Atta eds. Lecture Notes in Physics 12, Springer Verlag.Google Scholar
  61. ORSZAG, S.A. and TANG, C.M. (1979) J. Fluid Mech. 90, 129.Google Scholar
  62. PHYTHIAN, R. (1977) J. Phys. A 10, 777.Google Scholar
  63. POUGUET, A., FOURNIER, J.D. and SULEM, P.L. (1978) J. Phys. Lett. (Paris) 39, L 199.Google Scholar
  64. POUQUET, A., LESIUER, M., ANDRE, J.C. and BASDEVANT, C. (1975) J. Fluid Mech. 72, 305.Google Scholar
  65. POUQUET, A. (1978) J. Fluid. Mech. 88, 1.Google Scholar
  66. ROSE, H.A. (1977) J. Fluid Mech. 81, 719.Google Scholar
  67. ROSE, H.A. and SULEM, P.L. (1978) J. Phys. (Paris) 39, 441.Google Scholar
  68. SIGGIA, E.D. (1977) Phys. Rev. A 15, 1730.Google Scholar
  69. SIGGIA, E.D. and PATTERON, G.S. (1978) J. Fluid Mech. 84, 567.Google Scholar
  70. VAN ATTA, C.W. and PARK, J. (1972) in “Statistical Models and Turbulence” p. 402. M. Rosenblatt and C. Van Atta eds. Lecture Notes in Physics 12. Springer Verlag.Google Scholar
  71. WILSON K.G. (1971) Phys. Rev. B 4, 3174; B 4, 3184.Google Scholar
  72. YAGLOM, A.M. (1966) Sov. Phys. Dokl. 11, 26.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. L. Sulem
    • 1
  • J. D. Fournier
    • 1
  • A. Pouquet
    • 1
  1. 1.C.N.R.S., Observatoire de NiceFrance

Personalised recommendations