International Symposium on Symbolic and Algebraic Manipulation

EUROSAM 1979: Symbolic and Algebraic Computation pp 452-465 | Cite as

An algorithm for the computation of conjugacy classes and centralizers in p-groups

  • Volkmar Felsch
  • Joachim Neubüser
11. Applied Algebra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Computational problems in abstract algebra (Proceedings of a conference, Oxford, 1967), edited by John Leech. Pergamon, Oxford, 1970.Google Scholar
  2. [2]
    Computers in algebra and number theory (Proceedings of a symposium in applied mathematics, New York, 1970), edited by Garrett Birkhoff and Marshall Hall, Jr.. SIAM-AMS Proceedings, Vol. 4, Amer. Math. Soc., Providence, R.I., 1971.Google Scholar
  3. [3]
    Proceedings of the second international conference on the theory of groups (Austral. Nat. Univ., Canberra, 1973), edited by M. F. Newman. Lecture Notes in Mathematics, Vol.372, Springer, Berlin, 1974.Google Scholar
  4. [4]
    SYMSAC '76, Proceedings of the 1976 ACM symposium on symbolic and algebraic computation (Yorktown Heights, N.Y., 1976), edited by R.D. Jenks. Assoc. Comput. Mach., New York, 1976.Google Scholar
  5. [Bay74]
    Bayes, A.J.; Kautsky, J.; Wamsley, J.W.: Computation in nilpotent groups (application). pp. 82–89 in [3].Google Scholar
  6. [Can71]
    Cannon, John J.: Computing local structure of large finite groups. pp. 161–176 in [2].Google Scholar
  7. [Can74]
    Cannon, John: A general purpose group theory program. pp. 204–217 in [3].Google Scholar
  8. [Dix67]
    Dixon, John D.: High speed computation of group characters. Numer. Math. 10 (1967), 446–450.Google Scholar
  9. [Fel76]
    Felsch, Volkmar: A machine independent implementation of a collection algorithm for the multiplication of group elements. pp. 159–166 in [4].Google Scholar
  10. [Fel**]
    Felsch, V.; Felsch, W.; Neubüser, J.; Plesken, W.: On p-groups and space groups. IV. Some counterexamples to the class-breadth conjecture. To be published.Google Scholar
  11. [Hav76]
    Havas, George; Nicholson, Tim: Collection. pp. 9–14 in [4].Google Scholar
  12. [Jür70]
    Jürgensen, H.: Calculation with the elements of a finite group given by generators and defining relations. pp. 47–57 in [1].Google Scholar
  13. [Lee69]
    Leedham-Green, C.R.; Neumann, Peter M.; Wiegold, James: The breadth and the class of a finite p-group. J. London Math. Soc. 1 (1969), 409–420.Google Scholar
  14. [Mac74]
    Macdonald, I.D.: A computer application to finite p-groups. J. Austral. Math. Soc. 17 (1974), 102–112.Google Scholar
  15. [Neu61]
    Neubüser, J.: Bestimmung der Untergruppenverbände endlicher p-Gruppen auf einer programmgesteuerten elektronischen Dualmaschine. Numer. Math. 3 (1961), 271–278.Google Scholar
  16. [New76]
    Newman, M.F.: Calculating presentations for certain kinds of quotient groups. pp. 2–8 in [4].Google Scholar
  17. [Rob76]
    Robertz, Heinrich: Eine Methode zur Berechnung der Automorphismengruppe einer endlichen Gruppe. Diplomarbeit, RWTH Aachen, 1976.Google Scholar
  18. [Sim71]
    Sims, Charles C.: Determining the conjugacy classes of a permutation group. pp. 191–195 in [2].Google Scholar
  19. [Wam74]
    Wamsley, J.W.: Computation in nilpotent groups (theory). pp. 691–700 in [3].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Volkmar Felsch
    • 1
  • Joachim Neubüser
    • 1
  1. 1.Lehrstuhl D für Mathematik RWTH AachenGermany

Personalised recommendations