Advertisement

Integer matrices and Abelian groups

  • George Havas
  • Leon S. Sterling
11. Applied Algebra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)

Abstract

Practical methods for computing equivalent forms of integer matrices are presented. Both heuristic and modular techniques are used to overcome integer overflow problems, and have successfully handled matrices with hundreds of rows and columns. Applications to finding the structure of finitely presented abelian groups are described.

Keywords

Great Common Divisor Relation Matrix Integer Matrix Torsion Subgroup Large Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. [1]
    Erwin H. Bareiss, "Computational solutions of matrix problems over an integral domain", J. Inst. Math. Appl. 10 (1972), 68–104.Google Scholar
  2. [2]
    W.A. Blankinship, "Algorithm 287. Matrix triangularization with integer arithmetic [F1]", Comm. ACM 9 (1966), 513.Google Scholar
  3. [3]
    I. Borosh and A.S. Fraenkel, "Exact solutions of linear equations with rational coefficients by congruence techniques", Math. Comp. 20 (1966), 107–112.Google Scholar
  4. [4]
    Gordon H. Bradley, "Algorithms for Hermite and Smith normal matrices and linear Diophantine equations", Math. Comp. 25 (1971), 897–907.Google Scholar
  5. [5]
    Richard P. Brent, "Algorithm 524. MP, a Fortran multiple-precision arithmetic package [A1]", ACM Trans. Math. Software 4 (1978), 71–81.Google Scholar
  6. [6]
    Stanley Cabay, "Exact solution of linear equations", Second Symposium on Symbolic and Algebraic Manipulation, 392–398 (Proc. Sympos. held Los Angeles, 1971. Association for Computing Machinery, New York, 1971).Google Scholar
  7. [7]
    S. Cabay and T.P. Lam, "Congruence techniques for the exact solution of integer systems of linear equations", ACM Trans. Math. Software 3 (1977), 386–397.Google Scholar
  8. [8]
    L.E. Fuller, "A canonical set of matrices over a principal ideal ring modulo m", Canad. J. Math. 7 (1955), 54–59.Google Scholar
  9. [9]
    D.B. Gillies, "The exact calculation of the characteristic polynomial of a matrix", Information Processing (Proc. Internat. Conf. Information Processing, Paris, 1959, 62–66. UNESCO, Paris; Oldenbourg, München; Butterworths, London; 1960).Google Scholar
  10. [10]
    B. Hartley and T.O. Hawkes, Rings, modules and linear algebra (Chapman and Hall, London, Colchester, 1970).Google Scholar
  11. [11]
    George Havas, "A Reidemeister-Schreier program", Proc. Second Internat. Conf. Theory of Groups, Australian National University, Canberra, 1973, 347–356 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar
  12. [12]
    George Havas, J.S. Richardson and Leon S. Sterling, "The last of the Fibonacci groups", Proc. Roy. Soc. Edinburgh (to appear).Google Scholar
  13. [13]
    Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms (Addison-Wesley, Reading, Menlo Park, London, Don Mills, 1969).Google Scholar
  14. [14]
    Bernard R. McDonald, Finite rings with identity (Marcel Dekker, New York, 1974).Google Scholar
  15. [15]
    M.F. Newman, "A computer aided study of a group defined by fourth powers", Bull. Austral. Math. Soc. 14 (1976), 293–297.Google Scholar
  16. [16]
    Jürgen Nötzold, "Über reduzierte Gitterbasen und ihre mögliche Bedeutung für die numerische Behandlung linearer Gleichungssysteme", Dissertation, Rheinisch-Westfälsiche Technische Hochschule, Aachen, 1976.Google Scholar
  17. [17]
    J. Barkley Rosser, "A method of computing exact inverses of matrices with integer coefficients", J. Res. Nat. Bureau Standards 49 (1952), 349–358.Google Scholar
  18. [18]
    Charles C. Sims, "The influence of computers on algebras", Proc. Symp. Appl. Math. 20 (1974), 13–30.Google Scholar
  19. [19]
    David A. Smith, "A basis algorithm for finitely generated abelian groups", Math. Algorithms 1 (1966), 13–26.Google Scholar
  20. [20]
    H.J.S. Smith, "On systems of linear indeterminate equations and congruences", Philos. Trans. Royal Soc. London Cli (1861), 293–326. See also: The Collected Mathematical Papers of Henry John Stephen Smith, Volume I, 367–409 (Chelsea, Bronx, New York, 1965).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • George Havas
    • 1
  • Leon S. Sterling
    • 1
  1. 1.Department of Mathematics, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia

Personalised recommendations