Advertisement

An extension of liouville's theorem

  • Joel Moses
  • Richard Zippel
10. Integration
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)

Keywords

Special Function Elementary Function Algebraic Function Integration Problem Elementary Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.R. Kolchin, “Algebraic Groups and Algebraic Dependence,” Amer. J. Math. 90, (1968), 1151–1104.Google Scholar
  2. 2.
    J. Liouville, “Sur la detérmination des integrales dont la valeur est algébrique,” J. École Polytech. 14, (1833), 124–193.Google Scholar
  3. 3.
    J. Liouville, “Memoire sur les transcendantes elliptiques de premiére et seconde espéce, considerées comme fonctions de leur amplitude,” J. École Polytech. 14, (1833), 124–193.Google Scholar
  4. 4.
    J. Moses, Symbolic Integration, Ph. D. thesis, Massachusetts Institute of Technology, (1967).Google Scholar
  5. 5.
    J. Moses, “Toward a General Theory of Special Functions,” C. ACM 15, (1972), 550–554.Google Scholar
  6. 6.
    A. Ostrowski, “Sur les relations algébriques entre les intégrales indéfinies,” Acta Mathematica 78, (1946), 315–318.Google Scholar
  7. 7.
    R. H. Risch, “The problem of integration in finite terms,” Trans. AMS 139, (1969), 162–189.Google Scholar
  8. 8.
    R. H. Risch, “Solution of the problem of integration in finite terms,” Bull. AMS 76, (1970), 605–608.Google Scholar
  9. 9.
    M. Rosenlicht, “Integration in Finite Terms,” Amer. Math. Monthly (1972), 963–972.Google Scholar
  10. 10.
    M. Rothstein, Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions, Ph.D. thesis, University of Wisconsin — Madison, (1976).Google Scholar
  11. 11.
    J. R. Slagle, A Heuristic Program that Solves Symbolic Integration Problems in Freshman Calculus, Symbolic Automatic Integrator (SAINT), Ph.D. thesis, Massachusetts Institute of Technology, (1961).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Joel Moses
    • 1
  • Richard Zippel
    • 1
  1. 1.Laboratory for Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations