Probabilistic algorithms for verification of polynomial identities

  • Jacob T. Schwartz
6. Polynomial Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)


The startling success of the Rabin-Strassen-Solovay primality algorithm, togehter with the intriguing foundational possibility that axioms of randomness may constitute a useful fundamental source of mathematical truth independent of the standard axiomatic structure of mathematics, suggests a vigorous search for probabilistic algorithms. In illustration of this observation, we present various fast probabilistic algorithms, with probability of correctness guaranteed a priori, for testing polynomial identities and properties of systems of polynomials. Ancillary fast algorithms for calculating resultants and Sturm sequences are given. Theorems of elementary geometry can be proved much more efficiently by the techniques presented than by any known artificial intelligence approach.


Polynomial Identity Resultant System Real Zero Probabilistic Algorithm Mathematical Truth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. J. Davis, Proof, Completeness, Transcendentals, and Sampling. J. ACM 24 (1977) 298–310.Google Scholar
  2. [2]
    A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd Rev. Ed., University of California Press, 1951.Google Scholar
  3. [3]
    A. Seidenberg, A New Decision Method for Elementary Algebra. Annals of Math. 60 (1954) 365–374.Google Scholar
  4. [4]
    G. Hermann, Die Frage der Endlich Vielen Schritte in der Theorie der Polynomidealen. Math. Ann. 95 (1926) 736–788.Google Scholar
  5. [5]
    B. L. van der Waerden, Modern Analysis, Vols. I, II, Frederick Ungar Publ. Co., New York (1949, 1950).Google Scholar
  6. [6]
    —, Einführung in die Algebraische Geometrie (Zweite Auflage), Springer-Verlag, New York, 1973.Google Scholar
  7. [7]
    S. Kakeya, On Approximate Polynomials, Tohoku Math. J. 6 (1914) 182–186.Google Scholar
  8. [8]
    Y. Okada, On Approximate Polynomials with Integer Coefficients Only, Tohoku Math. J. 23 (1924) 26–35.Google Scholar
  9. [9]
    W. A. Martin, Determining the Equivalence of Algebraic Expressions by Hash Coding, J.A.C.M. 18 (1971) 549–558.Google Scholar
  10. [10]
    L. A. Heindel, Integer Arithmetic Algorithms for Polynomial Real Zero Determination, J. ACM 18 (1971) 533–548.Google Scholar
  11. [11]
    G. E. Collins, The Calculation of Multivariate Polynomial Resultants, J. ACM 18 (1971) 515–532.Google Scholar
  12. [12]
    —, Computer Algebra of Polynomials and Rational Functions, Amer. Math. Monthly 80 (1973) 725–53.Google Scholar
  13. [13]
    M. Fekete, Uber die Verteilung der Wurzeln bei Gewissen Algebraischen Gleichungen mit Ganzahligen Koeffizienten, Math. Zeitschr. 17 (1927) 228–249.Google Scholar
  14. [14]
    M. Fekete and G. Szegö, On Algebraic Equations with Integer Coefficients whose Roots Belong to a Given Point Set, Math. Zeitschr. 63 (1955) 158–172.Google Scholar
  15. [15]
    M. Rabin, Probabilistic Algorithms, in Algorithms and Complexity, New Directions and Recent Results (J. F. Traub, ed.), Academic Press, New York (1976) 21–39.Google Scholar
  16. [16]
    G. Chaitin and J. T. Schwartz, A Note on Monte Carlo Primality Tests and Algorithmic Information Theory. Comm. Pure Appl. Math. 31 (1978) 521–528.Google Scholar
  17. [17]
    N. Dunford and J. T. Schwartz, Linear Operators, Part II, Wiley-Interscience, New York, and London, 1963.Google Scholar
  18. [18]
    R. Moenck, Fast Computation of GCD's, Proc. Fifth Annual ACM Symposium on Theory of Computing, Assoc. for Comput. Machinery, New York, 1973, 142–151.Google Scholar
  19. [19]
    A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.Google Scholar
  20. [20]
    L. Bieberbach and G. Bauer, Vorlesungen über Algebra, Vol. 2, Springer-Verlag, New York, 1976.Google Scholar
  21. [21]
    J. T. Schwartz, Probabilistic Algorithms for the Verification of Polynomial Identities, Tech. Rept. 604, Dept. of Computer Science, Courant Inst. Math. Sci., New York Univ., 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Jacob T. Schwartz
    • 1
  1. 1.Computer Science Department, Courant InstituteNew York UniversityUSA

Personalised recommendations