On unit computation in real quadratic fields

  • M. Pohst
  • H. Zassenhaus
4. Algebraic Fields
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)


Fundamental Unit Continue Fraction Expansion Algebraic Number Field Fraction Algorithm Real Quadratic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I. Math. Z. 19(1924), 153–206.Google Scholar
  2. [2]
    O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1, dritte Auflage, B.G. Tenbner Verlagsgesellschaft, Stuttgart 1954.Google Scholar
  3. [3]
    M. Pohst, A program for determining fundamental units, in Proceedings of the 1976 Symposium on Symbolic and Algebraic Computation, Yorktown Heights 1976, 177–182.Google Scholar
  4. [4]
    M. Pohst and H. Zassenhaus, An effective number geometric method of computing the fundamental units of an algebraic number field, Math. Comp., vol. 31, no. 139(1977), 754–770.Google Scholar
  5. [5]
    M. Pohst and H. Zassenhaus, On effective computation of fundamental units, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Pohst
    • 1
  • H. Zassenhaus
    • 1
  1. 1.Department of MathematicsOhio State UniversityColumbus

Personalised recommendations