Fast computation of the rational hermite interpolant and solving toeplitz systems of equations via the extended Euclidean algorithm

  • David Y. Y. Yun
  • Fred G. Gustavson
3. Motices And Equations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)


Toeplitz Matrix Toeplitz Matrice Hermite Interpolation Euclidean Algorithm Pad6 Approximant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis of Computer Algorithms, Book, Addison Wesley, Reading, Mass., 1974Google Scholar
  2. [2]
    Gohberg, I. C., and Semencul, A. A., "On the Inversion of Finite Toeplitz Matrices and their Continuous Analogs", Mat. Issled., 2 (1972), pp. 201–233. (In Russian) Also see Gohberg, I. C. and Feldman, I. A., "Convolution equations and projection methods for their solutions", Translation of Math. Monographs, Vol. 41, Amer. Math. Soc., 1974.Google Scholar
  3. [3]
    Gragg, W. B., "The Padé Table and its Relation to Certain Algorithms of Numerical Analysis", SIAM Rev., Vol. 14, No. 1, Jan. 1972, pp. 1–62.Google Scholar
  4. [4]
    Gustavson, F. G., "An O(N log2 N) Algorithm to Compute the Hermite Interpolating Polynomial", to appear as an IBM RC Report.Google Scholar
  5. [5]
    Gustavson, F. G., "Analysis of the Berlekamp-Massey Linear Feedback Shift-Register Synthesis Algorithm", IBM J. Res. & Dev., Vol. 20, No. 3, May 1976, pp. 204–212.Google Scholar
  6. [6]
    Jain, A. K., "Fast Inversion of Banded Toeplitz Matrices by Circular Decompositions", IEEE Trans. on Acous., Speech, and Sig. Proc., Vol. ASSP-26, No. 2, Apr. 1978, pp. 121–126.Google Scholar
  7. [7]
    Kailath, T., Viera, A., and Morf, M., "Inverses of Toeplitz Operators, Innovations, and Orthogonal Polynomials", SIAM Rev., Vol. 20, No. 1, Jan. 1978, pp. 106–119.Google Scholar
  8. [8]
    Kronecker, L., "Zur Theorie der Elimination einer Variabelen aus zwei algebraisthen Gleichungen", Monatsber. Konigl. Preuss. Akad. Wiss. Berlin, 1881, pp. 535–600.Google Scholar
  9. [9]
    McEliece, R. J. and Shearer, J. B., "A Property of Euclid's Algorithm and an Application to Padé Approximation", SIAM J. Appl. Math., Vol. 34, No. 4, June 1978, pp. 611–615.Google Scholar
  10. [10]
    Morf, M. and Kailath, T., "Recent Results in Least-Square Estimation Theory", Annals of Economic and Social Measurements, 6/3/77, pp. 261–274.Google Scholar
  11. [11]
    Trench, W. F., "An algorithm for the inversion of finite Toeplitz Matrices", J. SIAM 12, 3, Sept. 1964, pp. 515–522.Google Scholar
  12. [12]
    Warner, D. D., Hermite Interpolation with Rational Functions, Thesis, Univ. of Calif. at San Diego, June 11, 1974.Google Scholar
  13. [13]
    Warner, D. D., "Kronecker's Algorithm for Hermite Interpolation with an Application to Sphere Drag in a Fluid-filled Tube". Proc. of the Workshop on Padé Approx., Feb. 1976, Eds. D. Bessis, J. Gliewicz, P. Mery, CNRS Marseilles, pp. 48–51.Google Scholar
  14. [14]
    Yun, D. Y. Y., "Uniform Bounds for a Class of Algebraic Mappings Related to Residue Computation and Chinese Remaindering", IBM R. C. 7185, Yorktown Heights, N. Y., June 16, 1978, to appear in SIAM J. Comp., Aug. 1979.Google Scholar
  15. [15]
    Zohar, S., "Toeplitz Matrix Inversion: The Algorithm of W. F. Trench", J. ACM 16, 4, Oct. 1969, pp. 592–601.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • David Y. Y. Yun
    • 1
  • Fred G. Gustavson
    • 1
  1. 1.Mathematical Sciences DepartmentIBM T. J. Watson Research CenterYorktown Heights

Personalised recommendations