Strict deterministic languages and controlled rewriting systems

  • Laurent Chottin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 71)


A controlled rewriting system over an alphabet X is a finite set of rules vi → wi (l⩽i⩽n) with vi , wi in X* such that |vi|<|wi| , each rule being associated with a regular language Ri ... X*. Given such a system, f ⇒ g means that f=αviβ and g=αwiβ for some i, α in Ri , β in X*. The system is said to be injective if and only if f ⇒ g ⇐ f′ implies f=f′. Controlled rewriting systems are a special case of finite relations with computable left context (P. Butzbach [5], 1973), which can be defined as above, with the Ri's recursive instead of regular. P. Butzbach proved [5] that every simple deterministic language [11] is generated by some finite relation with computable left context iterating from a finite set of words. Here we improve this result with our THEOREM 1 : "Every strict deterministic language is generated by some injective controlled rewriting system iterating from a finite set of words". Moreover, let A be a deterministic pushdown automaton and ⇒ be the rewriting relation associated with A by the above theorem. Let θ : X* ⇒ X* defined by θ(u)=v if
and ∃ w, w ⇒ v (v is unique, for ⇒ is injective); in some sense, θ generalizes the semi-Dyck simplification. We state :

THEOREM 2 : "If R ... X* is regular then so is θ(R)". This extends a result of M. Benois [1], also obtained by M. Fliess [10] (using quite different methods).

THEOREM 3 : "Let L be a language accepted by A by some accepting states. Then θ(L) is regular and

This is a reformulation of a result recently obtained by J. Sakarovitch [18] with a different method.


Normal Form Regular Language Finite Automaton Deterministic Finite Automaton Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BENOIS, M.: Parties rationnelles du groupe libre, C. R. Acad. Sci. PARIS A 269 (1969) 1188–1190.Google Scholar
  2. 2.
    BERSTEL, J.: Congruences plus-que-parfaites et languages algébriques, Séminaire d'Informatique Théorique (75/76/77) PARIS VI–VII, 123–147.Google Scholar
  3. 3.
    BOASSON, L.: Paries itérantes et languages algébriques, Thèse Sc. Math., Univ. PARIS VII (1974).Google Scholar
  4. 4.
    BUTZBACH, P.: Une famille de congruences de Thue pour lesquelles le problème de l'équivalence est décidable. Application à l'équivalence des grammaires séparées, in M. Nivat (éd.) Automata, Languages and Programming, North-Holland (1973) 3–12.Google Scholar
  5. 5.
    BUTZBACH, P.: Sur l'équivalence des grammaires simples, in J.P. Crestin et M. Nivat (éd.) Langages Algébriques, actes des journées d'informatique théorique de Bonascre 1973, ENSTA (1978), 223–245.Google Scholar
  6. 6.
    COCHET, Y.: Sur l'algébricité des classes de certaines congruences définies sur le monolde libre, Thèse de 3ème cycle, RENNES (1971).Google Scholar
  7. 7.
    COCHET, Y.: Church-Rosser congruences on free semi-groups, Proceedings of the Colloquium on Algebraic Theory of Semi-Groups, Szeged (1976).Google Scholar
  8. 8.
    COCHET, Y. et NIVAT, M.: Une généralisation des ensembles de Dyck, Israël J. of Math. 9 (1971), 389–395.Google Scholar
  9. 9.
    EILENBERG, S.: Automata, Languages and Machines, vol.A., Acad. Press, New-York (1974).Google Scholar
  10. 10.
    FLIESS, M.: Deux applications de la représentation matricielle d'une série rationnelle non commutative, J. of Algebra 19 (1971), 344–353.Google Scholar
  11. 11.
    HARRISON, M.A. and HAVEL, I.M.: Strict Deterministic Grammars, J. of Computer and System Sciences 7 (1973), 237–277.Google Scholar
  12. 12.
    HOPCROFT, J. and KORENJAK A.J.: Simple Deterministic Languages, 7 th Annual Symposium on Switching and Automata Theory, Berkeley (1966), 36–46.Google Scholar
  13. 13.
    NIVAT, M.: On some families languages related to the Dyck language, 2nd Annual ACM Symp. on Computing (1970), 221–225.Google Scholar
  14. 14.
    NIVAT, M.: Congruences de Thue et t-langages, Studia Sci. Math. Hungarica 6 (1971), 243–249.Google Scholar
  15. 15.
    NIVAT, M. and BENOIS, M.: Congruences parfaites et quasi-parfaites, Séminaire Dubreil, 25ème Année (71/72).Google Scholar
  16. 16.
    NIVAT, M.: Congruences et théorème de Church-Rosser, Journées sur les demi-groupes: Algèbre et Combinatoire, Séminaire Dubreil (75/76).Google Scholar
  17. 17.
    OGDEN, W.: Intercalation theorems for pushdown store and stock languages, Ph. D. Thesis, Stanford (1968).Google Scholar
  18. 18.
    SAKAROVITCH, J.: Un théorème de transversale rationnelle pour les automates à pile déterministes, Proc. 4 th GI Conference on Theor. Computer Sci. (K. Weihrauch, éd.), Springer-Verlag, to appear.Google Scholar
  19. 19.
    SAKAROVITCH, J.: Thèse Sc. Math., PARIS VII (in preparation).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Laurent Chottin
    • 1
  1. 1.Mathématiques et Informatique Laboratoire associé au C.N.R.S. no226Université de Bordeaux ITalenceFrance

Personalised recommendations