A generalization of Ginsburg and Rose's characterization of G-S-M mappings

  • C. Choffrut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 71)


We generalize Ginsburg and Rose's characterization of g-s-m mappings to the broader family of so-called subsequential functions, introduced by M.P.Schützenberger


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ch 1]
    CHOFFRUT C., Contribution à l'étude de quelques familles remarquables de fonctions rationnelles, Thèse Sci. Math. Université Paris VII, Paris, 1978.Google Scholar
  2. [Ch 2]
    CHOFFRUT C., Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles, Theoret. Comput. Sci., 5,(1977), 325–337.Google Scholar
  3. [Ei]
    EILENBERG S., "Automata, Languages and Machines", Vol. A, Academic Press, New York, N.Y., 1974.Google Scholar
  4. [Gi]
    GINSBURG S., "The Mathematical Theory of Context-Free Languages", Mac Graw-Hill, New York, 1966.Google Scholar
  5. [Gi Ro]
    GINSBURG S. & G.F. ROSE, A characterization of machine mappings, Can. J. Math. 18,(1966), 381–388.Google Scholar
  6. [MKS]
    MAGNUS W., KARRASS A. & D. SOLITAR, "Combinatorial Group Theory", Interscience Publ., New York, 1966.Google Scholar
  7. [Sa]
    SALOMON K., The Decidability of a Mapping Problem for Generalized Sequential Machines with Final States, J. Comput. System Sci., 10, (1975), 200–218.Google Scholar
  8. [Sch]
    SCHUTZENBERGER M.P., Sur une variante des fonctions séquentielles, Theoret. Comput. Sci., 11, (1977), 47–57.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • C. Choffrut
    • 1
  1. 1.Département de MathématiquesUniversité Paris VIIParis Cedex 05

Personalised recommendations